Preprocessing Imprecise Points and Splitting Triangulations

被引:0
|
作者
van Kreveld, Marc [1 ]
Loffler, Maarten [1 ]
Mitchell, Joseph S. B. [2 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, NL-3508 TC Utrecht, Netherlands
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY USA
来源
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a triangulation of a set of n points in the plane, each colored red or blue, we show how to compute a triangulation of just the blue points in time O(n). We apply this result to show that one can preprocess a set of disjoint regions (representing "imprecise points") in the plane having total complexity n in O(n log n) time so that if one point per region is specified with precise coordinates, a triangulation of the n points can be computed in O(n) time.
引用
下载
收藏
页码:544 / +
页数:3
相关论文
共 50 条
  • [31] Delaunay Triangulation of Imprecise Points Simplified and Extended
    Buchin, Kevin
    Loffler, Maarten
    Morin, Pat
    Mulzer, Wolfgang
    ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 131 - +
  • [32] Minimizing the Diameter of a Spanning Tree for Imprecise Points
    Chih-Hung Liu
    Sandro Montanari
    Algorithmica, 2018, 80 : 801 - 826
  • [33] EXISTENCE AND COMPUTATION OF TOURS THROUGH IMPRECISE POINTS
    Loeffler, Maarten
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2011, 21 (01) : 1 - 24
  • [34] Approximating largest convex hulls for imprecise points
    van Kreveld, Marc
    Loffler, Maarten
    JOURNAL OF DISCRETE ALGORITHMS, 2008, 6 (04) : 583 - 594
  • [35] Largest and smallest area triangles on imprecise points
    Keikha, Vahideh
    Loffler, Maarten
    Mohades, Ali
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 95
  • [36] Approximating largest convex hulls for imprecise points
    Loeffler, Maarten
    van Kreveld, Marc
    APPROXIMATION AND ONLINE ALGORITHMS, 2008, 4927 : 89 - 102
  • [37] On the stretch factor of Delaunay triangulations of points in convex position
    Cui, Shiliang
    Kanj, Iyad A.
    Xia, Ge
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (02): : 104 - 109
  • [38] A bijection for triangulations of a polygon with interior points and multiple edges
    Poulalhon, D
    Schaeffer, G
    THEORETICAL COMPUTER SCIENCE, 2003, 307 (02) : 385 - 401
  • [40] A METHOD TO FIND IDEAL POINTS FROM IDEAL TRIANGULATIONS
    Kabaya, Yuichi
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2010, 19 (04) : 509 - 524