Preprocessing Imprecise Points and Splitting Triangulations

被引:0
|
作者
van Kreveld, Marc [1 ]
Loffler, Maarten [1 ]
Mitchell, Joseph S. B. [2 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, NL-3508 TC Utrecht, Netherlands
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY USA
来源
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a triangulation of a set of n points in the plane, each colored red or blue, we show how to compute a triangulation of just the blue points in time O(n). We apply this result to show that one can preprocess a set of disjoint regions (representing "imprecise points") in the plane having total complexity n in O(n log n) time so that if one point per region is specified with precise coordinates, a triangulation of the n points can be computed in O(n) time.
引用
下载
收藏
页码:544 / +
页数:3
相关论文
共 50 条
  • [21] Isomorphic triangulations with small number of Steiner points
    Kranakis, E
    Urrutia, J
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1999, 9 (02) : 171 - 180
  • [22] On compatible triangulations with a minimum number of Steiner points
    Lubiw, Anna
    Mondal, Debajyoti
    THEORETICAL COMPUTER SCIENCE, 2020, 835 : 97 - 107
  • [23] Parity-Constrained Triangulations with Steiner Points
    Alvarez, Victor
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 35 - 57
  • [24] QUALITY TRIANGULATIONS WITH LOCALLY OPTIMAL STEINER POINTS
    Erten, Hale
    Ugor, Alper
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 2103 - 2130
  • [25] Parity-Constrained Triangulations with Steiner Points
    Victor Alvarez
    Graphs and Combinatorics, 2015, 31 : 35 - 57
  • [26] Minimum color spanning circle of imprecise points
    Acharyya, Ankush
    Jallu, Ramesh K.
    Keikha, Vahideh
    Loffler, Maarten
    Saumell, Maria
    THEORETICAL COMPUTER SCIENCE, 2022, 930 : 116 - 127
  • [27] Largest and Smallest Convex Hulls for Imprecise Points
    Maarten Löffler
    Marc van Kreveld
    Algorithmica, 2010, 56 : 235 - 269
  • [28] Minimizing the Diameter of a Spanning Tree for Imprecise Points
    Liu, Chih-Hung
    Montanari, Sandro
    ALGORITHMICA, 2018, 80 (02) : 801 - 826
  • [29] Minimizing the Diameter of a Spanning Tree for Imprecise Points
    Liu, Chih-Hung
    Montanari, Sandro
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 381 - 392
  • [30] Largest and Smallest Convex Hulls for Imprecise Points
    Loffler, Maarten
    van Kreveld, Marc
    ALGORITHMICA, 2010, 56 (02) : 235 - 269