Cross-species analysis of enhancer logic using deep learning

被引:53
|
作者
Minnoye, Liesbeth [1 ,2 ]
Taskiran, Ibrahim Ihsan [1 ,2 ]
Mauduit, David [1 ,2 ]
Fazio, Maurizio [3 ,4 ,5 ,6 ]
Van Aerschot, Linde [1 ,2 ,7 ]
Hulselmans, Gert [1 ,2 ]
Christiaens, Valerie [1 ,2 ]
Makhzami, Samira [1 ,2 ]
Seltenhammer, Monika [8 ,9 ]
Karras, Panagiotis [10 ,11 ]
Primot, Aline [12 ]
Cadieu, Edouard [12 ]
van Rooijen, Ellen [3 ,4 ,5 ,6 ]
Marine, Jean-Christophe [10 ,11 ]
Egidy, Giorgia [13 ]
Ghanem, Ghanem-Elias [14 ]
Zon, Leonard [3 ,4 ,5 ,6 ]
Wouters, Jasper [1 ,2 ]
Aerts, Stein [1 ,2 ]
机构
[1] KU Leuven VIB, Ctr Brain & Dis Res, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Human Genet, B-3000 Leuven, Belgium
[3] Boston Childrens Hosp, Stem Cell Program, Howard Hughes Med Inst, Boston, MA 02115 USA
[4] Boston Childrens Hosp, Div Pediat Hematol Oncol, Boston, MA 02115 USA
[5] Harvard Med Sch, Dana Farber Canc Inst, Boston, MA 02115 USA
[6] Harvard Stem Cell Inst, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[7] Katholieke Univ Leuven, Lab Dis Mech Canc, B-3000 Leuven, Belgium
[8] Med Univ Vienna, Ctr Forens Med, A-1090 Vienna, Austria
[9] BOKU Univ Nat Resources & Life Sci, Div Livestock Sci NUWI, A-1180 Vienna, Austria
[10] KU Leuven VIB, Ctr Canc Biol, B-3000 Leuven, Belgium
[11] Katholieke Univ Leuven, Dept Oncol, B-3000 Leuven, Belgium
[12] Univ Rennes 1, CNRS, UMR6290, Inst Genet & Dev Rennes,Fac Med, F-35000 Rennes, France
[13] Univ Paris Saclay, INRA, AgroParisTech, GABI, F-78350 Jouy En Josas, France
[14] Univ Libre Bruxelles, Inst Jules Bordet, B-1000 Brussels, Belgium
基金
欧洲研究理事会;
关键词
PIONEER TRANSCRIPTION FACTORS; FUNCTIONAL ELEMENTS; BINDING PROTEINS; MELANOMA; GENOME; EVOLUTION; METASTASIS; ZEBRAFISH; IDENTIFICATION; BIOCONDUCTOR;
D O I
10.1101/gr.260844.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4. Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.
引用
收藏
页码:1815 / 1834
页数:21
相关论文
共 50 条
  • [41] Cross-species behavior analysis with attention-based domain-adversarial deep neural networks
    Takuya Maekawa
    Daiki Higashide
    Takahiro Hara
    Kentarou Matsumura
    Kaoru Ide
    Takahisa Miyatake
    Koutarou D. Kimura
    Susumu Takahashi
    Nature Communications, 12
  • [42] Identifying Candidate Oocyte Reprogramming Factors Using Cross-Species Global Transcriptional Analysis
    Awe, Jason P.
    Byrne, James A.
    CELLULAR REPROGRAMMING, 2013, 15 (02) : 126 - 133
  • [43] INVESTIGATING CROSS-SPECIES SCALING FOR TRAUMATIC BRAIN INJURIES USING FINITE ELEMENT ANALYSIS
    Wu, Taotao
    Antona-Makoshi, Jacobo
    Alshareef, Ahmed
    Panzer, Matthew B.
    JOURNAL OF NEUROTRAUMA, 2018, 35 (16) : A280 - A280
  • [44] CUTE CROSS-SPECIES BIRTH
    不详
    SCIENCE NEWS, 1985, 128 (01) : 8 - 8
  • [45] Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization
    Vontas, J.
    David, J.-P.
    Nikou, D.
    Hemingway, J.
    Christophides, G. K.
    Louis, C.
    Ranson, H.
    INSECT MOLECULAR BIOLOGY, 2007, 16 (03) : 315 - 324
  • [46] Analysis of an essential requirement for the poly(A) binding protein function using cross-species complementation
    Chekanova, JA
    Shaw, RJ
    Belostotsky, DA
    CURRENT BIOLOGY, 2001, 11 (15) : 1207 - 1214
  • [47] Cross-species behavior analysis with attention-based domain-adversarial deep neural networks
    Maekawa, Takuya
    Higashide, Daiki
    Hara, Takahiro
    Matsumura, Kentarou
    Ide, Kaoru
    Miyatake, Takahisa
    Kimura, Koutarou D.
    Takahashi, Susumu
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [48] Cross-species chromosome painting
    Rens, Willem
    Fu, Beiyuan
    O'Brien, Patricia C. M.
    Ferguson-Smith, Malcolm
    NATURE PROTOCOLS, 2006, 1 (02) : 783 - 790
  • [49] Cross-species chromosome painting
    Willem Rens
    Beiyuan Fu
    Patricia C M O'Brien
    Malcolm Ferguson-Smith
    Nature Protocols, 2006, 1 : 783 - 790
  • [50] Cross-species network biology
    Ideker, T
    FASEB JOURNAL, 2004, 18 (08): : C313 - C313