Cross-species analysis of enhancer logic using deep learning

被引:53
|
作者
Minnoye, Liesbeth [1 ,2 ]
Taskiran, Ibrahim Ihsan [1 ,2 ]
Mauduit, David [1 ,2 ]
Fazio, Maurizio [3 ,4 ,5 ,6 ]
Van Aerschot, Linde [1 ,2 ,7 ]
Hulselmans, Gert [1 ,2 ]
Christiaens, Valerie [1 ,2 ]
Makhzami, Samira [1 ,2 ]
Seltenhammer, Monika [8 ,9 ]
Karras, Panagiotis [10 ,11 ]
Primot, Aline [12 ]
Cadieu, Edouard [12 ]
van Rooijen, Ellen [3 ,4 ,5 ,6 ]
Marine, Jean-Christophe [10 ,11 ]
Egidy, Giorgia [13 ]
Ghanem, Ghanem-Elias [14 ]
Zon, Leonard [3 ,4 ,5 ,6 ]
Wouters, Jasper [1 ,2 ]
Aerts, Stein [1 ,2 ]
机构
[1] KU Leuven VIB, Ctr Brain & Dis Res, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Human Genet, B-3000 Leuven, Belgium
[3] Boston Childrens Hosp, Stem Cell Program, Howard Hughes Med Inst, Boston, MA 02115 USA
[4] Boston Childrens Hosp, Div Pediat Hematol Oncol, Boston, MA 02115 USA
[5] Harvard Med Sch, Dana Farber Canc Inst, Boston, MA 02115 USA
[6] Harvard Stem Cell Inst, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[7] Katholieke Univ Leuven, Lab Dis Mech Canc, B-3000 Leuven, Belgium
[8] Med Univ Vienna, Ctr Forens Med, A-1090 Vienna, Austria
[9] BOKU Univ Nat Resources & Life Sci, Div Livestock Sci NUWI, A-1180 Vienna, Austria
[10] KU Leuven VIB, Ctr Canc Biol, B-3000 Leuven, Belgium
[11] Katholieke Univ Leuven, Dept Oncol, B-3000 Leuven, Belgium
[12] Univ Rennes 1, CNRS, UMR6290, Inst Genet & Dev Rennes,Fac Med, F-35000 Rennes, France
[13] Univ Paris Saclay, INRA, AgroParisTech, GABI, F-78350 Jouy En Josas, France
[14] Univ Libre Bruxelles, Inst Jules Bordet, B-1000 Brussels, Belgium
基金
欧洲研究理事会;
关键词
PIONEER TRANSCRIPTION FACTORS; FUNCTIONAL ELEMENTS; BINDING PROTEINS; MELANOMA; GENOME; EVOLUTION; METASTASIS; ZEBRAFISH; IDENTIFICATION; BIOCONDUCTOR;
D O I
10.1101/gr.260844.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4. Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.
引用
收藏
页码:1815 / 1834
页数:21
相关论文
共 50 条
  • [31] Phenotype Ontologies and Cross-Species Analysis for Translational Research
    Robinson, Peter N.
    Webber, Caleb
    PLOS GENETICS, 2014, 10 (04):
  • [32] Cross-species proteomics in analysis of mammalian sperm proteins
    Bayram, Helen L.
    Claydon, Amy J.
    Brownridge, Philip J.
    Hurst, Jane L.
    Mileham, Alan
    Stockley, Paula
    Beynon, Robert J.
    Hammond, Dean E.
    JOURNAL OF PROTEOMICS, 2016, 135 : 38 - 50
  • [33] A novel method for cross-species gene expression analysis
    Kristiansson, Erik
    Osterlund, Tobias
    Gunnarsson, Lina
    Arne, Gabriella
    Larsson, D. G. Joakim
    Nerman, Olle
    BMC BIOINFORMATICS, 2013, 14
  • [34] On gene prediction by cross-species comparative sequence analysis
    Chen, R
    Ali, H
    PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, : 446 - 447
  • [35] TriClust: A Tool for Cross-Species Analysis of Gene Regulation
    Dede, Duygu
    Ogul, Hasan
    MOLECULAR INFORMATICS, 2014, 33 (05) : 382 - 387
  • [36] CROSS-SPECIES ANALYSIS OF CARNIVORE, PRIMATE, AND HOMINID BEHAVIOR
    THOMPSON, PR
    JOURNAL OF HUMAN EVOLUTION, 1975, 4 (02) : 113 - 124
  • [37] A novel method for cross-species gene expression analysis
    Erik Kristiansson
    Tobias Österlund
    Lina Gunnarsson
    Gabriella Arne
    D G Joakim Larsson
    Olle Nerman
    BMC Bioinformatics, 14
  • [38] Within- and cross-species predictions of plant specialized metabolism genes using transfer learning
    Moore, Bethany M.
    Wang, Peipei
    Fan, Pengxiang
    Lee, Aaron
    Leong, Bryan
    Lou, Yann-Ru
    Schenck, Craig A.
    Sugimoto, Koichi
    Last, Robert
    Lehti-Shiu, Melissa D.
    Barry, Cornelius S.
    Shiu, Shin-Han
    IN SILICO PLANTS, 2020, 2 (01):
  • [39] A Cross-Species Analysis of Satb2 Expression Suggests Deep Conservation Across Vertebrate Lineages
    Sheehan-Rooney, Kelly
    Palinkasova, Bozena
    Eberhart, Johann K.
    Dixon, Michael J.
    DEVELOPMENTAL DYNAMICS, 2010, 239 (12) : 3481 - 3491
  • [40] Cross-species analysis and immunophenotyping using of a focused panel of immune-responsive genes
    De Velasco, Marco A.
    Kura, Yurie
    Sakai, Kazuko
    Nakagaki, Hideki
    Nishio, Kazuto
    Uemura, Hirotsugu
    CANCER RESEARCH, 2020, 80 (16)