Cross-species analysis of enhancer logic using deep learning

被引:53
|
作者
Minnoye, Liesbeth [1 ,2 ]
Taskiran, Ibrahim Ihsan [1 ,2 ]
Mauduit, David [1 ,2 ]
Fazio, Maurizio [3 ,4 ,5 ,6 ]
Van Aerschot, Linde [1 ,2 ,7 ]
Hulselmans, Gert [1 ,2 ]
Christiaens, Valerie [1 ,2 ]
Makhzami, Samira [1 ,2 ]
Seltenhammer, Monika [8 ,9 ]
Karras, Panagiotis [10 ,11 ]
Primot, Aline [12 ]
Cadieu, Edouard [12 ]
van Rooijen, Ellen [3 ,4 ,5 ,6 ]
Marine, Jean-Christophe [10 ,11 ]
Egidy, Giorgia [13 ]
Ghanem, Ghanem-Elias [14 ]
Zon, Leonard [3 ,4 ,5 ,6 ]
Wouters, Jasper [1 ,2 ]
Aerts, Stein [1 ,2 ]
机构
[1] KU Leuven VIB, Ctr Brain & Dis Res, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Human Genet, B-3000 Leuven, Belgium
[3] Boston Childrens Hosp, Stem Cell Program, Howard Hughes Med Inst, Boston, MA 02115 USA
[4] Boston Childrens Hosp, Div Pediat Hematol Oncol, Boston, MA 02115 USA
[5] Harvard Med Sch, Dana Farber Canc Inst, Boston, MA 02115 USA
[6] Harvard Stem Cell Inst, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[7] Katholieke Univ Leuven, Lab Dis Mech Canc, B-3000 Leuven, Belgium
[8] Med Univ Vienna, Ctr Forens Med, A-1090 Vienna, Austria
[9] BOKU Univ Nat Resources & Life Sci, Div Livestock Sci NUWI, A-1180 Vienna, Austria
[10] KU Leuven VIB, Ctr Canc Biol, B-3000 Leuven, Belgium
[11] Katholieke Univ Leuven, Dept Oncol, B-3000 Leuven, Belgium
[12] Univ Rennes 1, CNRS, UMR6290, Inst Genet & Dev Rennes,Fac Med, F-35000 Rennes, France
[13] Univ Paris Saclay, INRA, AgroParisTech, GABI, F-78350 Jouy En Josas, France
[14] Univ Libre Bruxelles, Inst Jules Bordet, B-1000 Brussels, Belgium
基金
欧洲研究理事会;
关键词
PIONEER TRANSCRIPTION FACTORS; FUNCTIONAL ELEMENTS; BINDING PROTEINS; MELANOMA; GENOME; EVOLUTION; METASTASIS; ZEBRAFISH; IDENTIFICATION; BIOCONDUCTOR;
D O I
10.1101/gr.260844.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4. Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.
引用
收藏
页码:1815 / 1834
页数:21
相关论文
共 50 条
  • [21] Cross-species comparisons
    Sarah Seton-Rogers
    Nature Reviews Cancer, 2006, 6 : 580 - 580
  • [22] A cross-species framework to identify vocal learning abilities in mammals
    Ravignani, Andrea
    Garcia, Maxime
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2022, 377 (1841)
  • [23] Cross-species oncogenomics using zebrafish models of cancer
    White, Richard M.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2015, 30 : 73 - 79
  • [24] A Cross-Species Analysis of MicroRNAs in the Developing Avian Face
    Powder, Kara E.
    Ku, Yuan-Chieh
    Brugmann, Samantha A.
    Veile, Rose A.
    Renaud, Nicole A.
    Helms, Jill A.
    Lovett, Michael
    PLOS ONE, 2012, 7 (04):
  • [25] A CROSS-SPECIES ANALYSIS OF THE AVERSIVENESS OF DENATONIUM SACCHARIDE AND QUININE
    DAVIS, SF
    HOSKINSON, KJ
    WILDER, KA
    SANDER, JA
    LARSEN, RK
    KNAPP, M
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1988, 26 (05) : 419 - 422
  • [26] A generalized permutation model for the analysis of cross-species data
    Lapointe, FJ
    Garland, T
    JOURNAL OF CLASSIFICATION, 2001, 18 (01) : 109 - 127
  • [27] Cross-species and intraspecies morphometric analysis of the corpus callosum
    Olivares, R
    Michalland, S
    Aboitiz, F
    BRAIN BEHAVIOR AND EVOLUTION, 2000, 55 (01) : 37 - 43
  • [28] Cross-species analysis of biological networks by Bayesian alignment
    Berg, Johannes
    Lassig, Michael
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (29) : 10967 - 10972
  • [29] A Generalized Permutation Model for the Analysis of Cross-Species Data
    François-Joseph Lapointe
    Theodore Garland, Jr.
    Journal of Classification, 2001, 18 : 109 - 127
  • [30] The unique epicuticular chemistry of Collembola - A cross-species analysis
    Moellerke, Anton
    Brasse, Gregor
    Bello, Jan
    Vidal, Diogo Montes
    Dettner, Konrad
    Zettel, Jurg
    Berg, Matty P.
    Scheu, Stefan
    Leinaas, Hans Petter
    Schulz, Stefan
    ISCIENCE, 2024, 27 (08)