Cross-species analysis of enhancer logic using deep learning

被引:53
|
作者
Minnoye, Liesbeth [1 ,2 ]
Taskiran, Ibrahim Ihsan [1 ,2 ]
Mauduit, David [1 ,2 ]
Fazio, Maurizio [3 ,4 ,5 ,6 ]
Van Aerschot, Linde [1 ,2 ,7 ]
Hulselmans, Gert [1 ,2 ]
Christiaens, Valerie [1 ,2 ]
Makhzami, Samira [1 ,2 ]
Seltenhammer, Monika [8 ,9 ]
Karras, Panagiotis [10 ,11 ]
Primot, Aline [12 ]
Cadieu, Edouard [12 ]
van Rooijen, Ellen [3 ,4 ,5 ,6 ]
Marine, Jean-Christophe [10 ,11 ]
Egidy, Giorgia [13 ]
Ghanem, Ghanem-Elias [14 ]
Zon, Leonard [3 ,4 ,5 ,6 ]
Wouters, Jasper [1 ,2 ]
Aerts, Stein [1 ,2 ]
机构
[1] KU Leuven VIB, Ctr Brain & Dis Res, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Human Genet, B-3000 Leuven, Belgium
[3] Boston Childrens Hosp, Stem Cell Program, Howard Hughes Med Inst, Boston, MA 02115 USA
[4] Boston Childrens Hosp, Div Pediat Hematol Oncol, Boston, MA 02115 USA
[5] Harvard Med Sch, Dana Farber Canc Inst, Boston, MA 02115 USA
[6] Harvard Stem Cell Inst, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[7] Katholieke Univ Leuven, Lab Dis Mech Canc, B-3000 Leuven, Belgium
[8] Med Univ Vienna, Ctr Forens Med, A-1090 Vienna, Austria
[9] BOKU Univ Nat Resources & Life Sci, Div Livestock Sci NUWI, A-1180 Vienna, Austria
[10] KU Leuven VIB, Ctr Canc Biol, B-3000 Leuven, Belgium
[11] Katholieke Univ Leuven, Dept Oncol, B-3000 Leuven, Belgium
[12] Univ Rennes 1, CNRS, UMR6290, Inst Genet & Dev Rennes,Fac Med, F-35000 Rennes, France
[13] Univ Paris Saclay, INRA, AgroParisTech, GABI, F-78350 Jouy En Josas, France
[14] Univ Libre Bruxelles, Inst Jules Bordet, B-1000 Brussels, Belgium
基金
欧洲研究理事会;
关键词
PIONEER TRANSCRIPTION FACTORS; FUNCTIONAL ELEMENTS; BINDING PROTEINS; MELANOMA; GENOME; EVOLUTION; METASTASIS; ZEBRAFISH; IDENTIFICATION; BIOCONDUCTOR;
D O I
10.1101/gr.260844.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4. Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.
引用
收藏
页码:1815 / 1834
页数:21
相关论文
共 50 条
  • [1] Cross-species enhancer prediction using machine learning
    MacPhillamy, Callum
    Alinejad-Rokny, Hamid
    Pitchford, Wayne S.
    Low, Wai Yee
    GENOMICS, 2022, 114 (05)
  • [2] Helixer: cross-species gene annotation of large eukaryotic genomes using deep learning
    Stiehler, Felix
    Steinborn, Marvin
    Scholz, Stephan
    Dey, Daniela
    Weber, Andreas P. M.
    Denton, Alisandra K.
    BIOINFORMATICS, 2020, 36 (22-23) : 5291 - 5298
  • [3] Automatic identification of the endangered hawksbill sea turtle behavior using deep learning and cross-species transfer learning
    Jeantet, Lorene
    Zondo, Kukhanya
    Delvenne, Cyrielle
    Martin, Jordan
    Chevallier, Damien
    Dufourq, Emmanuel
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2024, 227 (24):
  • [4] A cross-species enhancer activity analysis approach to identify the Ewing sarcoma cell of origin
    Grissenberger, Sarah
    Poetsch, Anna
    Heinzl, Monika
    Morelli, Luisa
    Sheffield, Nathan
    Popitsch, Niko
    Kovar, Heinrich
    Distel, Martin
    CANCER RESEARCH, 2020, 80 (14) : 94 - 95
  • [5] CROSS-SPECIES STUDY OF EXPLORATION AND LEARNING
    LESTER, D
    PERCEPTUAL AND MOTOR SKILLS, 1974, 39 (01) : 562 - 562
  • [6] Cross-species infections and their analysis
    Tan, MW
    ANNUAL REVIEW OF MICROBIOLOGY, 2002, 56 : 539 - 565
  • [7] Automatic gross tumor segmentation of canine head and neck cancer using deep learning and cross-species transfer learning
    Groendahl, Aurora Rosvoll
    Huynh, Bao Ngoc
    Tomic, Oliver
    Sovik, Aste
    Dale, Einar
    Malinen, Eirik
    Skogmo, Hege Kippenes
    Futsaether, Cecilia Marie
    FRONTIERS IN VETERINARY SCIENCE, 2023, 10
  • [8] Cross-Species Genomics Explorer™ for disease mutation identification through cross-species analysis
    Wong, S. C.
    Hakkinen, S.
    Kuisma, M.
    Ojala, K.
    Edgren, H.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 701 - 702
  • [9] Deep Transfer Learning for Cross-Species Plant Disease Diagnosis Adapting Mixed Subdomains
    Yan, Ke
    Guo, Xinlu
    Ji, Zhiwei
    Zhou, Xiaokang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (04) : 2555 - 2564
  • [10] Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity
    Chen, Wei-Chung
    Pauls, Stefan
    Bacha, Jamil
    Elgar, Greg
    Loose, Matthew
    Shimeld, Sebastian M.
    DEVELOPMENTAL BIOLOGY, 2014, 390 (02) : 261 - 272