The families of nonconforming mixed finite elements for linear elasticity on simplex grids

被引:2
|
作者
Sun, Yan-Ping [1 ]
Chen, Shao-Chun [2 ]
Yang, Yong-Qin [2 ]
机构
[1] Henan Inst Engn, Coll Sci, Zhenzhou 451101, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhenzhou 450001, Peoples R China
关键词
Linear elasticity equation; Mixed method; Nonconforming finite element; Tetrahedral mesh; Triangular mesh;
D O I
10.1016/j.amc.2019.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new family of nonconforming tetrahedral elements and a new family of nonconforming triangular elements for the stress-displacement system of linear elasticity problem. The local degrees of freedom of stress field only contain the normal moments on faces (sides) of element and the moments on element. The shape function spaces are simple, local, explicitly represented, and affine-equivalent. We also present two families simplified lowest-order finite elements by using the rigid motion model, and demonstrate our theory numerically in 2D area. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:348 / 362
页数:15
相关论文
共 50 条
  • [41] ENERGY NORM ANALYSIS OF EXACTLY SYMMETRIC MIXED FINITE ELEMENTS FOR LINEAR ELASTICITY
    Lederer, Philip L.
    Stenberg, Rolf
    MATHEMATICS OF COMPUTATION, 2023, 92 (340) : 583 - 605
  • [42] A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension
    Hu, Jun
    Man, Hongying
    Zhang, Shangyou
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (02) : 367 - 379
  • [43] A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension
    Jun Hu
    Hongying Man
    Shangyou Zhang
    Journal of Scientific Computing, 2014, 58 : 367 - 379
  • [44] Conforming Rectangular Mixed Finite Elements for Elasticity
    Chen, Shao-Chun
    Wang, Ya-Na
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (01) : 93 - 108
  • [45] Mixed finite elements for elasticity on quadrilateral meshes
    Arnold, Douglas N.
    Awanou, Gerard
    Qiu, Weifeng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (03) : 553 - 572
  • [46] Conforming Rectangular Mixed Finite Elements for Elasticity
    Shao-Chun Chen
    Ya-Na Wang
    Journal of Scientific Computing, 2011, 47 : 93 - 108
  • [47] Mixed finite elements for elasticity on quadrilateral meshes
    Douglas N. Arnold
    Gerard Awanou
    Weifeng Qiu
    Advances in Computational Mathematics, 2015, 41 : 553 - 572
  • [48] APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY
    Tabarraei, A.
    Sukumar, N.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2006, 3 (04) : 503 - 520
  • [49] ERROR INDICATORS FOR MIXED FINITE-ELEMENTS IN 2-DIMENSIONAL LINEAR ELASTICITY
    BRAESS, D
    KLAAS, O
    NIEKAMP, R
    STEIN, E
    WOBSCHAL, F
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 127 (1-4) : 345 - 356
  • [50] SUPERCONVERGENCE ANALYSIS OF THE STABLE CONFORMING RECTANGULAR MIXED FINITE ELEMENTS FOR THE LINEAR ELASTICITY PROBLEM
    Shi, Dongyang
    Li, Minghao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (02) : 205 - 214