The families of nonconforming mixed finite elements for linear elasticity on simplex grids

被引:2
|
作者
Sun, Yan-Ping [1 ]
Chen, Shao-Chun [2 ]
Yang, Yong-Qin [2 ]
机构
[1] Henan Inst Engn, Coll Sci, Zhenzhou 451101, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhenzhou 450001, Peoples R China
关键词
Linear elasticity equation; Mixed method; Nonconforming finite element; Tetrahedral mesh; Triangular mesh;
D O I
10.1016/j.amc.2019.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new family of nonconforming tetrahedral elements and a new family of nonconforming triangular elements for the stress-displacement system of linear elasticity problem. The local degrees of freedom of stress field only contain the normal moments on faces (sides) of element and the moments on element. The shape function spaces are simple, local, explicitly represented, and affine-equivalent. We also present two families simplified lowest-order finite elements by using the rigid motion model, and demonstrate our theory numerically in 2D area. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:348 / 362
页数:15
相关论文
共 50 条
  • [21] Stable mixed finite elements for linear elasticity with thin inclusions
    W. M. Boon
    J. M. Nordbotten
    Computational Geosciences, 2021, 25 : 603 - 620
  • [22] Stable mixed finite elements for linear elasticity with thin inclusions
    Boon, W. M.
    Nordbotten, J. M.
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (02) : 603 - 620
  • [23] Mortaring for linear elasticity using mixed and stabilized finite elements
    Gustafsson, Tom
    Raback, Peter
    Videman, Juha
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [24] A mixed nonconforming finite element for the elasticity and Stokes problems
    Farhloul, M
    Fortin, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (08): : 1179 - 1199
  • [25] High Order Mixed Finite Elements with Mass Lumping for Elasticity on Triangular Grids
    Yang, Yan
    Xie, Xiaoping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01): : 227 - 250
  • [26] A quadrilateral nonconforming finite element for linear elasticity problem
    Mao, Shipeng
    Chen, Shaochun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 28 (01) : 81 - 100
  • [27] A quadrilateral nonconforming finite element for linear elasticity problem
    Shipeng Mao
    Shaochun Chen
    Advances in Computational Mathematics, 2008, 28 : 81 - 100
  • [28] Mixed finite elements for elasticity
    Douglas N. Arnold
    Ragnar Winther
    Numerische Mathematik, 2002, 92 : 401 - 419
  • [29] Mixed finite elements for elasticity
    Arnold, DN
    Winther, R
    NUMERISCHE MATHEMATIK, 2002, 92 (03) : 401 - 419
  • [30] Stabilized Mixed Finite Element Methods for Linear Elasticity on Simplicial Grids in Rn
    Chen, Long
    Hu, Jun
    Huang, Xuehai
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (01) : 17 - 31