APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY

被引:58
|
作者
Tabarraei, A. [1 ]
Sukumar, N. [1 ]
机构
[1] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Barycentric coordinates; meshfree methods; natural neighbors; Laplace interpolant;
D O I
10.1142/S021987620600117X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a conforming polygonal finite element method is applied to problems in linear elasticity. Meshfree natural neighbor (Laplace) shape functions are used to construct conforming interpolating functions on any convex polygon. This provides greater flexibility to solve partial differential equations on complicated geometries. Closed-form expressions for Laplace shape functions on pentagonal, hexagonal, heptagonal, and octagonal reference elements are derived. Numerical examples are presented to demonstrate the accuracy of the method in two-dimensional elastostatics.
引用
收藏
页码:503 / 520
页数:18
相关论文
共 50 条
  • [1] Polygonal finite elements for finite elasticity
    Chi, Heng
    Talischi, Cameron
    Lopez-Pamies, Oscar
    Paulino, Glaucio H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 101 (04) : 305 - 328
  • [2] Linear smoothed polygonal and polyhedral finite elements
    Francis, Amrita
    Ortiz-Bernardin, Alejandro
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (09) : 1263 - 1288
  • [3] Polygonal finite elements
    Euler, T
    Schuhmann, R
    Weiland, T
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) : 675 - 678
  • [4] The extended free formulation of finite elements in linear elasticity
    Felippa, Carlos A.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1989, 56 (03): : 609 - 616
  • [5] A FAMILY OF MIXED FINITE-ELEMENTS FOR LINEAR ELASTICITY
    MORLEY, ME
    [J]. NUMERISCHE MATHEMATIK, 1989, 55 (06) : 633 - 666
  • [6] SYMMETRIC NONCONFORMING MIXED FINITE ELEMENTS FOR LINEAR ELASTICITY
    Gopalakrishnan, J.
    Guzman, J.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1504 - 1520
  • [7] Error estimation for the polygonal finite element method for smooth and singular linear elasticity
    Gonzalez-Estrada, Octavio A.
    Natarajan, Sundararajan
    Jose Rodenas, Juan
    Bordas, Stephane P. A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 92 : 109 - 119
  • [8] Conforming polygonal finite elements
    Sukumar, N
    Tabarraei, A
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (12) : 2045 - 2066
  • [9] Multiscale Finite Elements for Linear Elasticity: Oscillatory Boundary Conditions
    Buck, Marco
    Iliev, Oleg
    Andrae, Heiko
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 237 - 245
  • [10] Stable mixed finite elements for linear elasticity with thin inclusions
    W. M. Boon
    J. M. Nordbotten
    [J]. Computational Geosciences, 2021, 25 : 603 - 620