Polygonal finite elements

被引:13
|
作者
Euler, T [1 ]
Schuhmann, R [1 ]
Weiland, T [1 ]
机构
[1] Tech Univ Darmstadt, Inst Theorie Elektromagnet Felder, Fachbereich Elektrotech & Informationstech, D-64289 Darmstadt, Germany
关键词
basis functions for polygons; finite element method (FEM); finite integration technique (FIT); subgridding; Whitney forms;
D O I
10.1109/TMAG.2006.871375
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new class of finite element basis functions for arbitrary polygons is presented. The approximation spaces fulfill the same commuting properties as the standard Whitney approximation spaces. An example for the application of the new basis functions to a standard problem formulated with the finite integration technique (FIT) or the finite element method is given. The special choice of elements in the example suggests a rigorous implementation of subgridding in FIT/finite-difference time-domain schemes.
引用
收藏
页码:675 / 678
页数:4
相关论文
共 50 条
  • [1] Polygonal finite elements for finite elasticity
    Chi, Heng
    Talischi, Cameron
    Lopez-Pamies, Oscar
    Paulino, Glaucio H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 101 (04) : 305 - 328
  • [2] Conforming polygonal finite elements
    Sukumar, N
    Tabarraei, A
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (12) : 2045 - 2066
  • [3] Integration within polygonal finite elements
    Dasgupta, G
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2003, 16 (01) : 9 - 18
  • [4] Polygonal Finite Elements of Arbitrary Order
    Mukherjee, T.
    Webb, J. P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [5] Hierarchical Bases for Polygonal Finite Elements
    Mukherjee, Tapabrata
    Webb, Jon P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [6] Linear smoothed polygonal and polyhedral finite elements
    Francis, Amrita
    Ortiz-Bernardin, Alejandro
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (09) : 1263 - 1288
  • [7] Strain-smoothed polygonal finite elements
    Jung, Hoontae
    Lee, Chaemin
    Lee, Phill-Seung
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2023, 86 (03) : 311 - 324
  • [8] Optimal Quadrilateral Finite Elements on Polygonal Domains
    Hengguang Li
    Qinghui Zhang
    [J]. Journal of Scientific Computing, 2017, 70 : 60 - 84
  • [9] Gradient correction for polygonal and polyhedral finite elements
    Talischi, Cameron
    Pereira, Anderson
    Menezes, Ivan F. M.
    Paulino, Glaucio H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (3-4) : 728 - 747
  • [10] APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY
    Tabarraei, A.
    Sukumar, N.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2006, 3 (04) : 503 - 520