Conforming polygonal finite elements

被引:358
|
作者
Sukumar, N [1 ]
Tabarraei, A [1 ]
机构
[1] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
关键词
meshfree methods; natural neighbour interpolants; natural element method; Laplace interpolant; Wachspress basis functions; mean value co-ordinates;
D O I
10.1002/nme.1141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, conforming finite elements on polygon meshes are developed. Polygonal finite elements provide greater flexibility in mesh generation and are better-suited for applications in solid mechanics which involve a significant change in the topology of the material domain. In this study, recent advances in meshfree approximations, computational geometry, and computer graphics are used to construct different trial and test approximations on polygonal elements. A particular and notable contribution is the use of meshfree (natural-neighbour, nn) basis functions on a canonical element combined with an affine map to construct conforming approximations on convex polygons. This numerical formulation enables the construction of conforming approximation on n-gons (n greater than or equal to 3), and hence extends the potential applications of finite elements to convex polygons of arbitrary order. Numerical experiments on second-order elliptic boundary-value problems are presented to demonstrate the accuracy and convergence of the proposed method. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:2045 / 2066
页数:22
相关论文
共 50 条
  • [1] Polygonal finite elements
    Euler, T
    Schuhmann, R
    Weiland, T
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) : 675 - 678
  • [2] Polygonal finite elements for finite elasticity
    Chi, Heng
    Talischi, Cameron
    Lopez-Pamies, Oscar
    Paulino, Glaucio H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 101 (04) : 305 - 328
  • [3] Conforming and nonconforming harmonic finite elements
    Sorokina, Tatyana
    Zhang, Shangyou
    [J]. APPLICABLE ANALYSIS, 2020, 99 (04) : 569 - 584
  • [4] Integration within polygonal finite elements
    Dasgupta, G
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2003, 16 (01) : 9 - 18
  • [5] Polygonal Finite Elements of Arbitrary Order
    Mukherjee, T.
    Webb, J. P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [6] Hierarchical Bases for Polygonal Finite Elements
    Mukherjee, Tapabrata
    Webb, Jon P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [8] New curl conforming finite elements on parallelepiped
    J. H. Kim
    Do Y. Kwak
    [J]. Numerische Mathematik, 2015, 131 : 473 - 488
  • [9] ON THE ACCURACY OF THE QUASICONFORMING AND GENERALIZED CONFORMING FINITE ELEMENTS
    石钟慈
    [J]. Chinese Annals of Mathematics,Series B, 1990, (02) : 148 - 155
  • [10] Conforming Rectangular Mixed Finite Elements for Elasticity
    Chen, Shao-Chun
    Wang, Ya-Na
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (01) : 93 - 108