Excitation band topology and edge matter waves in Bose-Einstein condensates in optical lattices

被引:40
|
作者
Furukawa, Shunsuke [1 ]
Ueda, Masahito [1 ,2 ]
机构
[1] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[2] RIKEN, CEMS, Wako, Saitama 3510198, Japan
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
日本学术振兴会;
关键词
Bose-Einstein condensation; Bose-Hubbard model; band topology; chiral edge state; QUANTIZED HALL CONDUCTANCE; CHERN NUMBER; STATES; MODEL; REALIZATION; INSULATORS; FERMIONS; PARITY;
D O I
10.1088/1367-2630/17/11/115014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that Bose-Einstein condensates in optical lattices with broken time-reversal symmetry can support chiral edge modes originating from nontrivial bulk excitation band topology. To be specific, we analyze a Bose-Hubbard extension of the Haldane model, which can be realized with recently developed techniques of periodically modulating honeycomb optical lattices. The topological properties of Bloch bands known for the noninteracting case are shown to be smoothly carried over to Bogoliubov excitation bands for the interacting case. We show that the parameter ranges that display topological bands enlarge with increasing the Hubbard interaction or the particle density. In the presence of sharp boundaries, chiral edge modes appear in the gap between topological excitation bands. We demonstrate that by coherently transferring a portion of a condensate into an edge mode, a density wave is formed along the edge owing to an interference with the background condensate. This offers a unique method of detecting an edge mode through a macroscopic quantum phenomenon.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Bose-Einstein condensates in optical lattices: Spontaneous emission in the presence of photonic band gaps
    K.-P. Marzlin
    W. Zhang
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2000, 12 : 241 - 253
  • [42] Entanglement production with multimode Bose-Einstein condensates in optical lattices
    Yukalov, V. I.
    Yukalova, E. P.
    LASER PHYSICS, 2006, 16 (02) : 354 - 359
  • [43] Unconventional strongly interacting Bose-Einstein condensates in optical lattices
    Kuklov, A. B.
    PHYSICAL REVIEW LETTERS, 2006, 97 (11)
  • [44] Sieve of Eratosthenes for Bose-Einstein condensates in optical moire lattices
    Kouznetsov, Dmitry
    Van Dorpe, Pol
    Verellen, Niels
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [45] Feshbach resonance management of Bose-Einstein condensates in optical lattices
    Porter, Mason A.
    Chugunova, Marina
    Pelinovsky, Dmitry E.
    PHYSICAL REVIEW E, 2006, 74 (03)
  • [46] Kilohertz-Driven Bose-Einstein Condensates in Optical Lattices
    Arimondo, Ennio
    Ciampini, Donatella
    Eckardt, Andre
    Holthaus, Martin
    Morsch, Oliver
    ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 61, 2012, 61 : 515 - 547
  • [47] Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices
    Bludov, Yu. V.
    Konotop, V. V.
    PHYSICAL REVIEW A, 2010, 81 (01):
  • [48] Spatiotemporal dynamics of Bose-Einstein condensates in moving optical lattices
    Li, F.
    Shu, W. X.
    Jiang, J. G.
    Luo, H. L.
    Ren, Z.
    EUROPEAN PHYSICAL JOURNAL D, 2007, 41 (02): : 355 - 361
  • [49] Classical chaos with Bose-Einstein condensates in tilted optical lattices
    Thommen, Q
    Garreau, JC
    Zehnle, V
    PHYSICAL REVIEW LETTERS, 2003, 91 (21)
  • [50] Normal and anomalous densities in Bose-Einstein condensates with optical lattices
    Bendacha, M.
    Boudjemaa, A.
    CANADIAN JOURNAL OF PHYSICS, 2014, 92 (05) : 375 - 379