Excitation band topology and edge matter waves in Bose-Einstein condensates in optical lattices

被引:40
|
作者
Furukawa, Shunsuke [1 ]
Ueda, Masahito [1 ,2 ]
机构
[1] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[2] RIKEN, CEMS, Wako, Saitama 3510198, Japan
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
日本学术振兴会;
关键词
Bose-Einstein condensation; Bose-Hubbard model; band topology; chiral edge state; QUANTIZED HALL CONDUCTANCE; CHERN NUMBER; STATES; MODEL; REALIZATION; INSULATORS; FERMIONS; PARITY;
D O I
10.1088/1367-2630/17/11/115014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that Bose-Einstein condensates in optical lattices with broken time-reversal symmetry can support chiral edge modes originating from nontrivial bulk excitation band topology. To be specific, we analyze a Bose-Hubbard extension of the Haldane model, which can be realized with recently developed techniques of periodically modulating honeycomb optical lattices. The topological properties of Bloch bands known for the noninteracting case are shown to be smoothly carried over to Bogoliubov excitation bands for the interacting case. We show that the parameter ranges that display topological bands enlarge with increasing the Hubbard interaction or the particle density. In the presence of sharp boundaries, chiral edge modes appear in the gap between topological excitation bands. We demonstrate that by coherently transferring a portion of a condensate into an edge mode, a density wave is formed along the edge owing to an interference with the background condensate. This offers a unique method of detecting an edge mode through a macroscopic quantum phenomenon.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Avalanches of Bose-Einstein condensates in leaking optical lattices
    Ng, G. S.
    Hennig, H.
    Fleischmann, R.
    Kottos, T.
    Geisel, T.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [22] Instability of Bose-Einstein condensates moving in optical lattices
    Iigaya, K.
    Konabe, S.
    Danshita, I.
    Nikuni, T.
    LASER PHYSICS, 2007, 17 (02) : 215 - 220
  • [23] Transport and disruption of Bose-Einstein condensates in optical lattices
    Scott, RG
    Martin, AM
    Bujkiewicz, S
    Fromhold, TM
    Malossi, N
    Morsch, O
    Cristiani, M
    Arimondo, E
    PHYSICAL REVIEW A, 2004, 69 (03): : 033605 - 1
  • [24] Delocalizing transition of Bose-Einstein condensates in optical lattices
    Kalosakas, G
    Rasmussen, KO
    Bishop, AR
    PHYSICAL REVIEW LETTERS, 2002, 89 (03)
  • [25] Nonlinear effects for Bose-Einstein condensates in optical lattices
    Jona-Lasinio, M
    Morsch, O
    Cristiani, M
    Arimondo, E
    Menotti, C
    LASER PHYSICS, 2005, 15 (08) : 1180 - 1188
  • [26] Modulational instability in Bose-Einstein condensates in optical lattices
    Konotop, VV
    Salerno, M
    PHYSICAL REVIEW A, 2002, 65 (02): : 1 - 4
  • [27] Bose-Einstein condensates in a ring optical lattices trap
    Xue, Ju-Kui
    Li, Guan-Qiang
    Peng, Ping
    PHYSICS LETTERS A, 2006, 358 (01) : 74 - 79
  • [28] Soliton sheets of Bose-Einstein condensates in optical lattices
    Wang, Shu-Song
    Zhang, Su-Ying
    NEW JOURNAL OF PHYSICS, 2024, 26 (08):
  • [29] Resonant tunneling of Bose-Einstein condensates in optical lattices
    Zenesini, Alessandro
    Sias, Carlo
    Lignier, Hans
    Singh, Yeshpal
    Ciampini, Donatella
    Morsch, Oliver
    Mannella, Riccardo
    Arimondo, Ennio
    Tomadin, Andrea
    Wimberger, Sandro
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [30] Coherent structures of Bose-Einstein condensates in optical lattices
    Baizakov, BB
    Konotop, VV
    Salerno, M
    HIGHLIGHTS IN CONDENSED MATTER PHYSICS, 2003, 695 : 126 - 134