Effects of a semiconductor matrix on the band anticrossing in dilute group II-VI oxides

被引:17
|
作者
Welna, M. [1 ,2 ]
Kudrawiec, R. [1 ]
Nabetani, Y. [3 ]
Tanaka, T. [4 ,5 ]
Jaquez, M. [2 ,6 ]
Dubon, O. D. [2 ,7 ]
Yu, K. M. [2 ,8 ]
Walukiewicz, W. [2 ]
机构
[1] Wroclaw Univ Technol, Dept Expt Phys, PL-50370 Wroclaw, Poland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Yamanashi, Dept Elect Engn, Kofu, Yamanashi 4008511, Japan
[4] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan
[5] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[6] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[8] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
关键词
II-VI semiconductors; band gap; highly mismatched alloy; intermediate band gap; OPTICAL-PROPERTIES; COMPOSITION DEPENDENCE; ENERGY; GAP;
D O I
10.1088/0268-1242/30/8/085018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of a semiconductor matrix on the band anticrossing interaction is studied for four different dilute-oxide material systems: ZnSO, ZnSeO, ZnTeO, and ZnCdTeO. The choice of host material allows for independent control of the energy separation between the conduction band edge and the O energy level as well as the coupling parameter. The transition energies measured by photoreflectance and optical absorption are well explained by the band anticrossing model with the coupling parameter increasing from 1.35 eV for ZnSO to 2.8 eV for ZnTeO and showing approximately linear dependence on the electronegativity difference between O and the host anion.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis
    Liu, Haitao
    Owen, Jonathan S.
    Alivisatos, A. Paul
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (02) : 305 - 312
  • [32] Effects of alloying, ordering, and strain on the exchange parameters of II-VI dilute magnetic semiconductors
    Segev, D
    Wei, SH
    PHYSICAL REVIEW B, 2004, 70 (18) : 1 - 5
  • [33] MISCIBILITY GAP IN II-VI ALLOY SEMICONDUCTOR SYSTEMS
    OHTANI, H
    KOJIMA, K
    ISHIDA, K
    NISHIZAWA, T
    JOURNAL OF ALLOYS AND COMPOUNDS, 1992, 182 (01) : 103 - 114
  • [34] II-VI SEMICONDUCTOR MICROSTRUCTURES - FROM PHYSICS TO OPTOELECTRONICS
    PAUTRAT, JL
    JOURNAL DE PHYSIQUE III, 1994, 4 (12): : 2413 - 2425
  • [35] ELECTRONIC-STRUCTURE OF II-VI SEMICONDUCTOR NANOCRYSTALS
    LIPPENS, PE
    LANNOO, M
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1991, 9 (04): : 485 - 487
  • [36] Implantation induced changes in II-VI semiconductor heterostructures
    Bacher, G
    Eisert, D
    Kümmell, T
    Forchel, A
    Kühnelt, M
    Wagner, HP
    Landwehr, G
    APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, PTS 1 AND 2, 1999, 475 : 814 - 817
  • [37] BALLISTIC TRANSPORT IN II-VI SEMICONDUCTOR COMPOUNDS AND ALLOYS
    BERDING, MA
    KRISHNAMURTHY, S
    SHER, A
    CHEN, AB
    JOURNAL OF CRYSTAL GROWTH, 1988, 86 (1-4) : 33 - 38
  • [38] Thermoelectric figure of merit of II-VI semiconductor nanowires
    Mingo, N
    APPLIED PHYSICS LETTERS, 2004, 85 (24) : 5986 - 5988
  • [39] Miscibility gap in II-VI alloy semiconductor systems
    Ohtani, H.
    Kojima, K.
    Ishida, K.
    Nishizawa, T.
    Journal of Alloys and Compounds, 1992, 182 (01): : 103 - 114
  • [40] Assembly, Properties, and Application of Ordered Group II-VI and IV-VI Colloidal Semiconductor Nanoparticle Films
    Micheel, Mathias
    Baruah, Raktim
    Kumar, Krishan
    Waechtler, Maria
    ADVANCED MATERIALS INTERFACES, 2022, 9 (28)