Effects of a semiconductor matrix on the band anticrossing in dilute group II-VI oxides

被引:17
|
作者
Welna, M. [1 ,2 ]
Kudrawiec, R. [1 ]
Nabetani, Y. [3 ]
Tanaka, T. [4 ,5 ]
Jaquez, M. [2 ,6 ]
Dubon, O. D. [2 ,7 ]
Yu, K. M. [2 ,8 ]
Walukiewicz, W. [2 ]
机构
[1] Wroclaw Univ Technol, Dept Expt Phys, PL-50370 Wroclaw, Poland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Yamanashi, Dept Elect Engn, Kofu, Yamanashi 4008511, Japan
[4] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan
[5] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[6] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[8] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
关键词
II-VI semiconductors; band gap; highly mismatched alloy; intermediate band gap; OPTICAL-PROPERTIES; COMPOSITION DEPENDENCE; ENERGY; GAP;
D O I
10.1088/0268-1242/30/8/085018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of a semiconductor matrix on the band anticrossing interaction is studied for four different dilute-oxide material systems: ZnSO, ZnSeO, ZnTeO, and ZnCdTeO. The choice of host material allows for independent control of the energy separation between the conduction band edge and the O energy level as well as the coupling parameter. The transition energies measured by photoreflectance and optical absorption are well explained by the band anticrossing model with the coupling parameter increasing from 1.35 eV for ZnSO to 2.8 eV for ZnTeO and showing approximately linear dependence on the electronegativity difference between O and the host anion.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Intracenter transitions of iron-group ions in II-VI semiconductor matrices
    Agekyan, VF
    PHYSICS OF THE SOLID STATE, 2002, 44 (11) : 2013 - 2030
  • [12] Phonons on II-VI (110) semiconductor surfaces
    Tütüncü, HM
    Miotto, R
    Srivastava, GP
    PHYSICAL REVIEW B, 2000, 62 (23): : 15797 - 15805
  • [13] Novel ferroelectricity in II-VI semiconductor ZnO
    Onodera, A
    FERROELECTRICS, 2002, 267 : 131 - 137
  • [14] Beryllium containing II-VI semiconductor devices
    Waag, A
    Fischer, F
    Lugauer, HJ
    Schull, K
    Zehnder, U
    Gerhard, T
    Keim, M
    Reuscher, G
    Landwehr, G
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VI, PTS 1 AND 2, 1998, 3283 : 30 - 38
  • [15] Optical properties of II-VI semiconductor nanoparticles
    Neuendorf, R
    Brysch, A
    Bour, G
    Kreibig, U
    CONTROLLING AND USING LIGHT IN NANOMETRIC DOMAINS, 2001, 4456 : 39 - 47
  • [16] LUMINESCENT PROPERTIES OF II-VI SEMICONDUCTOR ELECTRODES
    BURK, AA
    CARPENTER, MK
    ELLIS, AB
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 188 (AUG): : 36 - CHED
  • [17] Structural transformations in II-VI semiconductor nanocrystals
    Ricolleau, C
    Audinet, L
    Gandais, M
    Gacoin, T
    EUROPEAN PHYSICAL JOURNAL D, 1999, 9 (1-4): : 565 - 570
  • [18] OPTICAL STUDY OF II-VI SEMICONDUCTOR NANOSTRUCTURES
    DANG, LS
    GOURGON, C
    MAGNEA, N
    MARIETTE, H
    VIEU, C
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1994, 9 (11) : 1953 - 1958
  • [19] Ferromagnetism in II-VI based semiconductor structures
    Cibert, J
    Ferrand, D
    Tatarenko, S
    Wasiela, A
    Kossacki, P
    Dietl, T
    ACTA PHYSICA POLONICA A, 2001, 100 (02) : 227 - 236
  • [20] Structural characterization of II-VI semiconductor nanoparticles
    Neder, R.B.
    Korsunskiy, V.I.
    Chory, Ch.
    Müller, G.
    Hofmann, A.
    Dembski, S.
    Graf, Ch.
    Rühl, E.
    Physica Status Solidi (C) Current Topics in Solid State Physics, 2007, 4 (09): : 3221 - 3233