Effects of a semiconductor matrix on the band anticrossing in dilute group II-VI oxides

被引:17
|
作者
Welna, M. [1 ,2 ]
Kudrawiec, R. [1 ]
Nabetani, Y. [3 ]
Tanaka, T. [4 ,5 ]
Jaquez, M. [2 ,6 ]
Dubon, O. D. [2 ,7 ]
Yu, K. M. [2 ,8 ]
Walukiewicz, W. [2 ]
机构
[1] Wroclaw Univ Technol, Dept Expt Phys, PL-50370 Wroclaw, Poland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Yamanashi, Dept Elect Engn, Kofu, Yamanashi 4008511, Japan
[4] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan
[5] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[6] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[8] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
关键词
II-VI semiconductors; band gap; highly mismatched alloy; intermediate band gap; OPTICAL-PROPERTIES; COMPOSITION DEPENDENCE; ENERGY; GAP;
D O I
10.1088/0268-1242/30/8/085018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of a semiconductor matrix on the band anticrossing interaction is studied for four different dilute-oxide material systems: ZnSO, ZnSeO, ZnTeO, and ZnCdTeO. The choice of host material allows for independent control of the energy separation between the conduction band edge and the O energy level as well as the coupling parameter. The transition energies measured by photoreflectance and optical absorption are well explained by the band anticrossing model with the coupling parameter increasing from 1.35 eV for ZnSO to 2.8 eV for ZnTeO and showing approximately linear dependence on the electronegativity difference between O and the host anion.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Shape control of II-VI semiconductor nanomateriats
    Kumar, S
    Nann, T
    SMALL, 2006, 2 (03) : 316 - 329
  • [22] Photoelectron spectroscopy of II-VI semiconductor heterostructures
    Worz, M
    Hampel, M
    Flierl, R
    Gebhardt, W
    ACTA PHYSICA POLONICA A, 1996, 90 (05) : 1113 - 1117
  • [23] Structural transformations in II-VI semiconductor nanocrystals
    C. Ricolleau
    L. Audinet
    M. Gandais
    T. Gacoin
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1999, 9 : 565 - 570
  • [24] Phase Transition of II-VI Semiconductor Nanocrystals
    Li, S.
    Yang, G. W.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (35): : 15054 - 15060
  • [25] Group II-VI downconverting phosphors
    Valdna, V
    Gavrish, T
    Hiie, J
    Mellikov, E
    Mere, A
    INFRARED APPLICATIONS OF SEMICONDUCTORS - MATERIALS, PROCESSING AND DEVICES, 1997, 450 : 463 - 466
  • [26] Emission in wide band gap II-VI semiconductor compounds with low dimensional structure
    Fan, XW
    Yu, GY
    Yang, Y
    Shen, DZ
    Zhang, JY
    Liu, YC
    Lu, YM
    NANO SCIENCE AND TECHNOLOGY: NOVEL STRUCTURES AND PHENOMENA, 2003, : 214 - 219
  • [27] Piezoelectric properties of monolayer II-VI group oxides by first-principles calculations
    Alyoruk, M. Menderes
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (12): : 2534 - 2539
  • [28] X-ray absorption and diffraction study of II-VI dilute oxide semiconductor alloy epilayers
    Boscherini, F.
    Malvestuto, M.
    Ciatto, G.
    D'Acapito, F.
    Bisognin, G.
    De Salvador, D.
    Berti, M.
    Felici, M.
    Polimeni, A.
    Nabetani, Y.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (44)
  • [29] Modelling of band offsets in II-VI heterostructures
    Ünlü, H
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 229 (01): : 581 - 585
  • [30] ELECTRON-MICROSCOPIC STUDY OF REAL STRUCTURE OF II-VI GROUP SEMICONDUCTOR COMPOUNDS
    AULEITNER, Y
    MIZERA, E
    VARMINSKII, T
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1977, 41 (11): : 2290 - 2292