2-Universally complete Riesz spaces and inverse-closed Riesz spaces

被引:2
|
作者
Montalvo, F. [1 ]
Pulgarin, A. [1 ]
Requejo, B. [1 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz 06071, Spain
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2006年 / 17卷 / 02期
关键词
D O I
10.1016/S0019-3577(06)80022-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show mainly two results about uniformly closed Riesz subspaces of R-X containing the constant functions. First, for such a Riesz subspace E, we solve the problem of determining the properties that a real continuous function phi defined on a proper open interval of R should have in order that the conditions "E is closed under composition with phi" and "E is closed under inversion in X" become equivalent. The second result, reformulated in the more general frame of the Archimedean Riesz spaces with weak order unit e, establishes that E (e-uniformly complete and e-semisimple) is closed under inversion in C(Spec E) if and only if E is 2-universally e-complete.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 50 条
  • [41] Positive polynomials on Riesz spaces
    James Cruickshank
    John Loane
    Raymond A. Ryan
    Positivity, 2017, 21 : 885 - 895
  • [42] RIESZ BASES IN WEIGHTED SPACES
    Putintseva, A. A.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (01): : 45 - 50
  • [43] THE RIESZ ASPECTS OF chi(2) SEQUENCE SPACES
    Subramanian, Nagarajan
    Misra, Umakanta
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (02): : 277 - 286
  • [44] On (in)dependence measures in Riesz spaces
    Krajewska, Elzbieta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [45] Pointfree Spectra of Riesz Spaces
    M. M. Ebrahimi
    A. Karimi
    M. Mahmoudi
    Applied Categorical Structures, 2004, 12 : 397 - 409
  • [46] UNUSUAL NORMED RIESZ SPACES
    HOLBROOK, JA
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (02): : 213 - &
  • [47] Subspaces of normed Riesz spaces
    Van Gaans, O
    POSITIVITY, 2004, 8 (02) : 143 - 164
  • [48] Probabilistic Normed Riesz Spaces
    Celaleddin SENCMEN
    Serpil PEHLVAN
    ActaMathematicaSinica, 2012, 28 (07) : 1401 - 1410
  • [49] RIESZ SPACES OF MEASURES ON SEMIRINGS
    Ercan, Z.
    MATEMATICKI VESNIK, 2009, 61 (03): : 235 - 239
  • [50] ARCHIMEDEAN QUOTIENT RIESZ SPACES
    LUXEMBURG, WA
    MOORE, LC
    DUKE MATHEMATICAL JOURNAL, 1967, 34 (04) : 725 - +