2-Universally complete Riesz spaces and inverse-closed Riesz spaces

被引:2
|
作者
Montalvo, F. [1 ]
Pulgarin, A. [1 ]
Requejo, B. [1 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz 06071, Spain
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2006年 / 17卷 / 02期
关键词
D O I
10.1016/S0019-3577(06)80022-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show mainly two results about uniformly closed Riesz subspaces of R-X containing the constant functions. First, for such a Riesz subspace E, we solve the problem of determining the properties that a real continuous function phi defined on a proper open interval of R should have in order that the conditions "E is closed under composition with phi" and "E is closed under inversion in X" become equivalent. The second result, reformulated in the more general frame of the Archimedean Riesz spaces with weak order unit e, establishes that E (e-uniformly complete and e-semisimple) is closed under inversion in C(Spec E) if and only if E is 2-universally e-complete.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 50 条
  • [21] Amarts on Riesz spaces
    Wen Chi Kuo
    Coenraad C. A. Labuschagne
    Bruce A. Watson
    Acta Mathematica Sinica, English Series, 2008, 24 : 329 - 342
  • [22] Amarts on Riesz spaces
    Kuo, Wen Chi
    Labuschagne, Coenraad C. A.
    Watson, Bruce A.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) : 329 - 342
  • [23] Serninorms on ordered vector spaces that extend to Riesz seminorms on larger Riesz spaces
    van Gaans, O
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (01): : 15 - 30
  • [24] RIESZ SPACES AND TYPE-(C) SPACES
    PORTENIER, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (18): : 850 - +
  • [25] Pointfree spectra of Riesz spaces
    Ebrahimi, MM
    Karimi, A
    Mahmoudi, M
    APPLIED CATEGORICAL STRUCTURES, 2004, 12 (04) : 397 - 409
  • [26] Reverse Martingales in Riesz Spaces
    Korostenski, Mareli
    Labuschagne, Coenraad C. A.
    Watson, Bruce A.
    OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2010, 195 : 213 - +
  • [27] Łukasiewicz logic and Riesz spaces
    Antonio Di Nola
    Ioana Leuştean
    Soft Computing, 2014, 18 : 2349 - 2363
  • [28] Conditional expectations on Riesz spaces
    Kuo, WC
    Labuschagne, CCA
    Watson, BA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (02) : 509 - 521
  • [29] Probabilistic Normed Riesz Spaces
    Sencimen, Celaleddin
    Pehlivan, Serpil
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (07) : 1401 - 1410
  • [30] Riesz means on symmetric spaces
    Fotiadis, A.
    Papageorgiou, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (01)