RIESZ BASES IN WEIGHTED SPACES

被引:0
|
作者
Putintseva, A. A. [1 ]
机构
[1] Bashkir State Univ, Zaki Validi Str 32, Ufa 450074, Russia
来源
UFA MATHEMATICAL JOURNAL | 2011年 / 3卷 / 01期
基金
俄罗斯基础研究基金会;
关键词
Riesz basis; weighted Hilbert spaces; reproducing kernel; Fourier-Laplace transform; functions of sine type;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article deals with weighted Hilbert spaces with convex weights. Let h be a convex function on a bounded interval I of the real axis. We denote a space of locally integrable functions on I, such that parallel to f parallel to := root integral(I) vertical bar f(t)vertical bar(2)e(-2h(t)) dt < infinity by L-2 (I, h). If I = (-pi; pi), h(t) 1, the space L-2 (I, h) coincides with the classical space L-2 (-pi; pi) and the Fourier trigonometric system is a Riesz basis in this space. As it has been shown by B.J. Levin, nonharmonic Riesz bases in L-2 (-pi; pi) can be constructed using a system of zeros of entire functions of a sine type. In this paper, we prove that if a Riesz basis of exponentials exists in the space L-2 (I, h); this space is isomorphic (as a normed space) to the classical space L-2(I). Thus, the existence of Riesz bases of exponentials is the exclusive property of the classical space L-2 (-pi; pi).
引用
收藏
页码:45 / 50
页数:6
相关论文
共 50 条
  • [1] A remark on Riesz bases of subspaces in Hardy spaces
    Dang, Pei
    Mai, Weixiong
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (11) : 1950 - 1961
  • [2] Norms of projectors onto spaces with Riesz bases
    Von Golitschek, M
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) : 209 - 221
  • [3] A characterization of weighted Sobolev spaces via weighted Riesz bounded variation spaces
    Cruz-Uribe, David
    Guzman, Oscar
    Rafeiro, Humberto
    [J]. STUDIA MATHEMATICA, 2024, 274 (03) : 287 - 304
  • [4] Riesz Bases of Reproducing Kernels in Small Fock Spaces
    K. Kellay
    Y. Omari
    [J]. Journal of Fourier Analysis and Applications, 2020, 26
  • [5] Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
    Bin Han
    Zuowei Shen
    [J]. Constructive Approximation, 2009, 29 : 369 - 406
  • [6] Riesz Bases of Reproducing Kernels in Small Fock Spaces
    Kellay, K.
    Omari, Y.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
  • [7] On Uncountable Frames and Riesz Bases in Nonseparable Banach Spaces
    Ismailov, Migdad I.
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 149 - 170
  • [8] Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
    Han, Bin
    Shen, Zuowei
    [J]. CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) : 369 - 406
  • [9] Riesz-Like Bases in Rigged Hilbert Spaces
    Bellomonte, Giorgia
    Trapani, Camillo
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (03): : 243 - 265
  • [10] Sampling, interpolation and Riesz bases in small Fock spaces
    Baranov, A.
    Dumont, A.
    Hartmann, A.
    Kellay, K.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (06): : 1358 - 1389