ON THE RANGE OF A RANDOM WALK IN A TORUS AND RANDOM INTERLACEMENTS

被引:6
|
作者
Procaccia, Eviatar B. [1 ,2 ]
Shellef, Eric [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Weizmann Inst Sci, Fac Math & Comp Sci, IL-76100 Rehovot, Israel
来源
ANNALS OF PROBABILITY | 2014年 / 42卷 / 04期
关键词
Random walk; random interlacements; mixing; VACANT SET; PERCOLATION;
D O I
10.1214/14-AOP924
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let a simple random walk run inside a torus of dimension three or higher for a number of steps which is a constant proportion of the volume. We examine geometric properties of the range, the random subgraph induced by the set of vertices visited by the walk. Distance and mixing bounds for the typical range are proven that are a k-iterated log factor from those on the full torus for arbitrary k. The proof uses hierarchical renormalization and techniques that can possibly be applied to other random processes in the Euclidean lattice. We use the same technique to bound the heat kernel of a random walk on random interlacements.
引用
收藏
页码:1590 / 1634
页数:45
相关论文
共 50 条