ON THE RANGE OF A RANDOM WALK IN A TORUS AND RANDOM INTERLACEMENTS

被引:6
|
作者
Procaccia, Eviatar B. [1 ,2 ]
Shellef, Eric [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Weizmann Inst Sci, Fac Math & Comp Sci, IL-76100 Rehovot, Israel
来源
ANNALS OF PROBABILITY | 2014年 / 42卷 / 04期
关键词
Random walk; random interlacements; mixing; VACANT SET; PERCOLATION;
D O I
10.1214/14-AOP924
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let a simple random walk run inside a torus of dimension three or higher for a number of steps which is a constant proportion of the volume. We examine geometric properties of the range, the random subgraph induced by the set of vertices visited by the walk. Distance and mixing bounds for the typical range are proven that are a k-iterated log factor from those on the full torus for arbitrary k. The proof uses hierarchical renormalization and techniques that can possibly be applied to other random processes in the Euclidean lattice. We use the same technique to bound the heat kernel of a random walk on random interlacements.
引用
收藏
页码:1590 / 1634
页数:45
相关论文
共 50 条
  • [31] Deviations for the capacity of the range of a random walk
    Asselah, Amine
    Schapira, Bruno
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 28
  • [32] BRANCHING CAPACITY OF A RANDOM WALK RANGE
    Schapira, Bruno
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2024, 152 (03):
  • [33] CAPACITY OF THE RANGE OF RANDOM WALK ON Zd
    Asselah, Amine
    Schapira, Bruno
    Sousi, Perla
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (11) : 7627 - 7645
  • [34] The range of asymmetric branching random walk
    Chi, Jui-Lin
    Hong, Jyy-, I
    STATISTICS & PROBABILITY LETTERS, 2023, 193
  • [35] The dimension of the range of a transient random walk
    Georgiou, Nicos
    Khoshnevisan, Davar
    Kim, Kunwoo
    Ramos, Alex D.
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [36] The inner boundary of random walk range
    Okada, Izumi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (03) : 939 - 959
  • [37] The range of a simple random walk on Z
    Vallois, P
    ADVANCES IN APPLIED PROBABILITY, 1996, 28 (04) : 1014 - 1033
  • [38] The range of simple branching random walk
    Grill, K
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 213 - 218
  • [39] RANGE OF RECURRENT RANDOM WALK IN PLANE
    JAIN, NC
    PRUITT, WE
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 16 (04): : 279 - &
  • [40] Boundary of the range of transient random walk
    Amine Asselah
    Bruno Schapira
    Probability Theory and Related Fields, 2017, 168 : 691 - 719