The Range of a Random Walk on a Comb

被引:0
|
作者
Pach, Janos [1 ,2 ]
Tardos, Gabor [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Renyi Inst, Budapest, Hungary
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2013年 / 20卷 / 03期
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
2-DIMENSIONAL COMB; RECURRENT; GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The graph obtained from the integer grid Z x Z by the removal of all horizontal edges that do not belong to the x-axis is called a comb. In a random walk on a graph, whenever a walker is at a vertex v, in the next step it will visit one of the neighbors of v, each with probability 1/d(v), where d(v) denotes the degree of v. We answer a question of Csaki, Csorgo, Foldes, Revesz, and Tusnady by showing that the expected number of vertices visited by a random walk on the comb after n steps is (1/2 root 2 pi + o(1)) root n log n. This contradicts a claim of Weiss and Havlin.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Random Walk on the Range of Random Walk
    David A. Croydon
    Journal of Statistical Physics, 2009, 136 : 349 - 372
  • [2] Random Walk on the Range of Random Walk
    Croydon, David A.
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (02) : 349 - 372
  • [3] Random walk on hierarchical comb structures
    Arkhincheev, VE
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (04) : 710 - 715
  • [4] Random walk on hierarchical comb structures
    V. E. Arkhincheev
    Journal of Experimental and Theoretical Physics, 1999, 88 : 710 - 715
  • [5] ON RANGE OF RANDOM WALK
    JAIN, N
    OREY, S
    ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (04) : 373 - &
  • [6] Mixing time for the random walk on the range of the random walk on tori
    Cerny, Jiri
    Sapozhnikov, Artem
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [7] RANGE OF TRANSIENT RANDOM WALK
    JAIN, NC
    PRUITT, WE
    JOURNAL D ANALYSE MATHEMATIQUE, 1971, 24 : 369 - &
  • [8] Entropy of random walk range
    Benjamini, Itai
    Kozma, Gady
    Yadin, Ariel
    Yehudayoff, Amir
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (04): : 1080 - 1092
  • [10] Scaling limit for random walk on the range of random walk in four dimensions
    Croydon, D. A.
    Shiraishi, D.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 166 - 184