The Range of a Random Walk on a Comb

被引:0
|
作者
Pach, Janos [1 ,2 ]
Tardos, Gabor [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Renyi Inst, Budapest, Hungary
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2013年 / 20卷 / 03期
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
2-DIMENSIONAL COMB; RECURRENT; GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The graph obtained from the integer grid Z x Z by the removal of all horizontal edges that do not belong to the x-axis is called a comb. In a random walk on a graph, whenever a walker is at a vertex v, in the next step it will visit one of the neighbors of v, each with probability 1/d(v), where d(v) denotes the degree of v. We answer a question of Csaki, Csorgo, Foldes, Revesz, and Tusnady by showing that the expected number of vertices visited by a random walk on the comb after n steps is (1/2 root 2 pi + o(1)) root n log n. This contradicts a claim of Weiss and Havlin.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The range of a simple random walk on Z
    Vallois, P
    ADVANCES IN APPLIED PROBABILITY, 1996, 28 (04) : 1014 - 1033
  • [22] The range of simple branching random walk
    Grill, K
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 213 - 218
  • [23] RANGE OF RECURRENT RANDOM WALK IN PLANE
    JAIN, NC
    PRUITT, WE
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 16 (04): : 279 - &
  • [24] Boundary of the range of transient random walk
    Amine Asselah
    Bruno Schapira
    Probability Theory and Related Fields, 2017, 168 : 691 - 719
  • [25] Boundary of the range of transient random walk
    Asselah, Amine
    Schapira, Bruno
    PROBABILITY THEORY AND RELATED FIELDS, 2017, 168 (3-4) : 691 - 719
  • [26] ON THE RANGE OF A CONSTRAINED RANDOM-WALK
    DENHOLLANDER, WTF
    WEISS, GH
    JOURNAL OF APPLIED PROBABILITY, 1988, 25 (03) : 451 - 463
  • [27] VARIANCE OF THE RANGE OF A RANDOM-WALK
    TORNEY, DC
    JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (1-2) : 49 - 66
  • [28] On the local time of random walk on the 2-dimensional comb
    Csaki, Endre
    Csoergo, Miklos
    Foeldes, Antonia
    Revesz, Pal
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (06) : 1290 - 1314
  • [29] Analytic random-walk model for the coherence of a frequency comb
    Eramo, R.
    Pastor, P. Cancio
    Cavalieri, S.
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [30] On the Area of the Largest Square Covered by a Comb-Random-Walk
    Revesz, Pal
    ASYMPTOTIC LAWS AND METHODS IN STOCHASTICS, 2015, : 77 - 85