On the local time of random walk on the 2-dimensional comb

被引:11
|
作者
Csaki, Endre [1 ]
Csoergo, Miklos [2 ]
Foeldes, Antonia [3 ]
Revesz, Pal [4 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[3] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
[4] Vienna Univ Technol, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
基金
加拿大自然科学与工程研究理事会;
关键词
Random walk; 2-dimensional comb; Strong approximation; 2-dimensional Wiener process; Local time; Laws of the iterated logarithm; Iterated Brownian motion; BROWNIAN-MOTION; INCREMENTS; THEOREMS; SITES; BIG; LAW;
D O I
10.1016/j.spa.2011.01.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the path behaviour of general random walks, and that of their local times, on the 2-dimensional comb lattice C-2 that is obtained from Z(2) by removing all horizontal edges off the x-axis. We prove strong approximation results for such random walks and also for their local times. Concentrating mainly on the latter, we establish strong and weak limit theorems, including Strassen-type laws of the iterated logarithm, Hirsch-type laws, and weak convergence results in terms of functional convergence in distribution. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1290 / 1314
页数:25
相关论文
共 50 条
  • [1] Asymptotic behaviour of the simple random walk on the 2-dimensional comb
    Bertacchi, Daniela
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 1184 - 1203
  • [2] Strong limit theorems for a simple random walk on the 2-dimensional comb
    Csaki, Endre
    Csorgo, Miklos
    Foldes, Antonia
    Revesz, Pal
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2371 - 2390
  • [3] RANGE OF A RANDOM-WALK IN 2-DIMENSIONAL TIME
    ETEMADI, N
    ANNALS OF PROBABILITY, 1976, 4 (05): : 836 - 843
  • [4] RENEWAL THEOREM FOR A RANDOM-WALK IN 2-DIMENSIONAL TIME
    NEY, P
    WAINGER, S
    STUDIA MATHEMATICA, 1972, 44 (01) : 71 - &
  • [5] THE NONISOTROPIC 2-DIMENSIONAL RANDOM-WALK
    BARBER, BC
    WAVES IN RANDOM MEDIA, 1993, 3 (04): : 243 - 256
  • [6] A 2-DIMENSIONAL RANDOM WALK MODEL FOR POLYMERS
    GUPTA, VD
    GUPTA, AK
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1965, 20 (03) : 423 - &
  • [7] SOME EXPLICIT RESULTS FOR AN ASYMMETRIC 2-DIMENSIONAL RANDOM WALK
    BARNETT, VD
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1963, 59 (02): : 451 - &
  • [8] LEVEL CROSSINGS OF A 2-DIMENSIONAL RANDOM WALK WITH 3 ALTERNATIVES
    LEZAK, E
    MIZRAHI, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (04): : 687 - &
  • [9] Modulation Effect with Global Ambiguity in 2-Dimensional Random Walk
    Sakiyama, Tomoko
    Gunji, Yukio-Pegio
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [10] THE LOCAL TIME OF A 2-DIMENSIONAL DIFFUSION
    BAXTER, M
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 445 (1925): : 657 - 667