On the local time of random walk on the 2-dimensional comb

被引:11
|
作者
Csaki, Endre [1 ]
Csoergo, Miklos [2 ]
Foeldes, Antonia [3 ]
Revesz, Pal [4 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[3] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
[4] Vienna Univ Technol, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
基金
加拿大自然科学与工程研究理事会;
关键词
Random walk; 2-dimensional comb; Strong approximation; 2-dimensional Wiener process; Local time; Laws of the iterated logarithm; Iterated Brownian motion; BROWNIAN-MOTION; INCREMENTS; THEOREMS; SITES; BIG; LAW;
D O I
10.1016/j.spa.2011.01.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the path behaviour of general random walks, and that of their local times, on the 2-dimensional comb lattice C-2 that is obtained from Z(2) by removing all horizontal edges off the x-axis. We prove strong approximation results for such random walks and also for their local times. Concentrating mainly on the latter, we establish strong and weak limit theorems, including Strassen-type laws of the iterated logarithm, Hirsch-type laws, and weak convergence results in terms of functional convergence in distribution. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1290 / 1314
页数:25
相关论文
共 50 条
  • [31] Valleys and the Maximum Local Time for Random Walk in Random Environment
    Amir Dembo
    Nina Gantert
    Yuval Peres
    Zhan Shi
    Probability Theory and Related Fields, 2007, 137 : 443 - 473
  • [32] Valleys and the maximum local time for random walk in random environment
    Dembo, Amir
    Gantert, Nina
    Peres, Yuval
    Shi, Zhan
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (3-4) : 443 - 473
  • [33] A GRADIENT RANDOM-WALK METHOD FOR 2-DIMENSIONAL REACTION-DIFFUSION EQUATIONS
    SHERMAN, A
    MASCAGNI, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (06): : 1280 - 1293
  • [34] 2-DIMENSIONAL PASSIVE RANDOM-WALK IN LIPID BILAYERS AND FLUID PATHWAYS IN BIOMEMBRANES
    GALLA, HJ
    HARTMANN, W
    THEILEN, U
    SACKMANN, E
    JOURNAL OF MEMBRANE BIOLOGY, 1979, 48 (03): : 215 - 236
  • [35] MARKOVIAN NATURE OF THE 2-DIMENSIONAL SELF-AVOIDING RANDOM-WALK PROBLEM
    WIEGEL, FW
    PHYSICA A, 1979, 98 (1-2): : 345 - 351
  • [36] Random walk on hierarchical comb structures
    Arkhincheev, VE
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (04) : 710 - 715
  • [37] Random walk on hierarchical comb structures
    V. E. Arkhincheev
    Journal of Experimental and Theoretical Physics, 1999, 88 : 710 - 715
  • [38] COLLISION PROBLEMS OF RANDOM-WALKS IN 2-DIMENSIONAL TIME
    ETEMADI, N
    JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (02) : 249 - 264
  • [39] MULTIPLE RANGE OF 2-DIMENSIONAL RECURRENT WALK
    FLATTO, L
    ANNALS OF PROBABILITY, 1976, 4 (02): : 229 - 248
  • [40] On the Local Time of the Half-Plane Half-Comb Walk
    Endre Csáki
    Antónia Földes
    Journal of Theoretical Probability, 2022, 35 : 1247 - 1261