The Range of a Random Walk on a Comb

被引:0
|
作者
Pach, Janos [1 ,2 ]
Tardos, Gabor [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Renyi Inst, Budapest, Hungary
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2013年 / 20卷 / 03期
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会;
关键词
2-DIMENSIONAL COMB; RECURRENT; GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The graph obtained from the integer grid Z x Z by the removal of all horizontal edges that do not belong to the x-axis is called a comb. In a random walk on a graph, whenever a walker is at a vertex v, in the next step it will visit one of the neighbors of v, each with probability 1/d(v), where d(v) denotes the degree of v. We answer a question of Csaki, Csorgo, Foldes, Revesz, and Tusnady by showing that the expected number of vertices visited by a random walk on the comb after n steps is (1/2 root 2 pi + o(1)) root n log n. This contradicts a claim of Weiss and Havlin.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Random walk with long-range constraints
    Peled, Ron
    Spinka, Yinon
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [32] On the range of the simple random walk bridge on groups
    Benjamini, Itai
    Izkovsky, Roey
    Kesten, Harry
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 591 - 612
  • [33] LAW OF ITERATED LOGARITHM FOR RANGE OF RANDOM WALK
    JAIN, NC
    PRUITT, WE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 971 - &
  • [34] FURTHER LIMIT THEOREMS FOR RANGE OF RANDOM WALK
    JAIN, NC
    PRUITT, WE
    JOURNAL D ANALYSE MATHEMATIQUE, 1975, 27 : 94 - 117
  • [35] A Monotonicity Result for the Range of a Perturbed Random Walk
    Lung-Chi Chen
    Rongfeng Sun
    Journal of Theoretical Probability, 2014, 27 : 997 - 1010
  • [36] FURTHER LIMIT THEOREMS FOR RANGE OF RANDOM WALK
    JAIN, NC
    PRUITT, WE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 829 - &
  • [37] A Monotonicity Result for the Range of a Perturbed Random Walk
    Chen, Lung-Chi
    Sun, Rongfeng
    JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (03) : 997 - 1010
  • [38] THE RANGE OF TREE-INDEXED RANDOM WALK
    Le Gall, Jean-Francois
    Lin, Shen
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2016, 15 (02) : 271 - 317
  • [39] Range of cube-indexed random walk
    Kahn, T
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 124 : 189 - 201
  • [40] Range of cube-indexed random walk
    Kahn J.
    Israel Journal of Mathematics, 2001, 124 (1) : 189 - 201