Kahler-Ricci solitons on toric manifolds with positive first Chern class

被引:204
|
作者
Wang, XJ [1 ]
Zhu, XH [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
Kahler-Ricci soliton; Toric Fano manifold; Monge-Ampere equation;
D O I
10.1016/j.aim.2003.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove there exists a Kahler-Ricci soliton, unique up to holomorphic automorphisms, on any toric Kahler manifold with positive first Chern class, and the Kahler Ricci soliton is a Kahler-Einstein metric if and only if the Futaki invariant vanishes. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
  • [1] COUPLED KAHLER-RICCI SOLITONS ON TORIC FANO MANIFOLDS
    Hultgren, Jakob
    [J]. ANALYSIS & PDE, 2019, 12 (08): : 2067 - 2094
  • [2] KAHLER-RICCI SOLITONS ON CERTAIN TORIC BUNDLES
    Nakagawa, Yasuhiro
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (02) : 379 - 390
  • [3] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [4] Kahler-Ricci solitons on homogeneous toric bundles
    Podesta, Fabio
    Spiro, Andrea
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 642 : 109 - 127
  • [5] Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds
    Tian, G
    Zhu, XH
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 991 - 995
  • [6] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [7] Uniqueness of shrinking gradient Kahler-Ricci solitons on non-compact toric manifolds
    Cifarelli, Charles
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3746 - 3791
  • [8] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421
  • [9] The moduli space of Fano manifolds with Kahler-Ricci solitons
    Inoue, Eiji
    [J]. ADVANCES IN MATHEMATICS, 2019, 357
  • [10] Fano Manifolds with Weak almost Kahler-Ricci Solitons
    Wang, Feng
    Zhu, Xiaohua
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (09) : 2437 - 2464