Uniqueness of shrinking gradient Kahler-Ricci solitons on non-compact toric manifolds

被引:3
|
作者
Cifarelli, Charles [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SYMPLECTIC FORM; CO-HOMOLOGY; METRICS; CONVEXITY; GEOMETRY; INVARIANT;
D O I
10.1112/jlms.12673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, up to biholomorphism, there is at most one complete Tn$T<^>n$-invariant shrinking gradient Kahler-Ricci soliton on a non-compact toric manifold M. We also establish uniqueness without assuming Tn$T<^>n$-invariance if the Ricci curvature is bounded and if the soliton vector field lies in the Lie algebra t$\mathfrak {t}$ of Tn$T<^>n$. As an application, we show that, up to isometry, the unique complete shrinking gradient Kahler-Ricci soliton with bounded scalar curvature on CP1xC$\mathbb {C}\mathbb {P}<^>{1} \times \mathbb {C}$ is the standard product metric associated to the Fubini-Study metric on CP1$\mathbb {C}\mathbb {P}<^>{1}$ and the Euclidean metric on C$\mathbb {C}$.
引用
收藏
页码:3746 / 3791
页数:46
相关论文
共 50 条