The moduli space of Fano manifolds with Kahler-Ricci solitons

被引:11
|
作者
Inoue, Eiji [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
Fano; Kahler-Ricci soliton; Moduli; GROMOV-HAUSDORFF LIMITS; EINSTEIN METRICS; FUTAKI INVARIANT; K-STABILITY; SCALAR CURVATURE; TORIC MANIFOLDS; UNIQUENESS; COMPLEX; FLOW; CLASSIFICATION;
D O I
10.1016/j.aim.2019.106841
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a canonical Hausdorff complex analytic moduli space of Fano manifolds with Kahler-Ricci solitons. This enlarges the moduli space of Fano manifolds with Kaliler- Einstein metrics. We discover a moment map picture for Kohler-Ricci solitons, and give complex analytic charts on the topological space consisting of Kaliler-Ricci solitons, by studying differential geometric aspects of this moment map. Some stacky words and arguments on Gromov-Hausdorff convergence help to glue them together in the holomorphic manner. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:65
相关论文
共 50 条