Fano Manifolds with Weak almost Kahler-Ricci Solitons

被引:2
|
作者
Wang, Feng [1 ]
Zhu, Xiaohua [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, BICMR, Beijing 100871, Peoples R China
关键词
UNIQUENESS; SPACES;
D O I
10.1093/imrn/rnu006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that a sequence of weak almost Kahler-Ricci solitons under further suitable conditions converges to a Kahler-Ricci soliton with complex codimension of singularities at least 2 in the Gromov-Hausdorff topology. As a corollary, we show that on a Fano manifold with the modified K-energy bounded below, there exists a sequence of weak almost Kahler-Ricci solitons which converges to a Kahler-Ricci soliton with complex codimension of singularities at least 2 in the Gromov-Hausdorff topology.
引用
收藏
页码:2437 / 2464
页数:28
相关论文
共 50 条
  • [1] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [2] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421
  • [3] The moduli space of Fano manifolds with Kahler-Ricci solitons
    Inoue, Eiji
    [J]. ADVANCES IN MATHEMATICS, 2019, 357
  • [4] COUPLED KAHLER-RICCI SOLITONS ON TORIC FANO MANIFOLDS
    Hultgren, Jakob
    [J]. ANALYSIS & PDE, 2019, 12 (08): : 2067 - 2094
  • [5] On the Kahler-Ricci flow on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Sturm, Jacob
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (02) : 573 - 581
  • [6] The Kahler-Ricci Flow on Fano Manifolds
    Cao, Huai-Dong
    [J]. INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 239 - 297
  • [7] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [8] The Conical Kahler-Ricci Flow with Weak Initial Data on Fano Manifolds
    Liu, Jiawei
    Zhang, Xi
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (17) : 5343 - 5384
  • [9] Convergence of the Kahler-Ricci flow on Fano manifolds
    Tian, Gang
    Zhu, Xiaohua
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 678 : 223 - 245
  • [10] Kahler-Ricci flow on stable Fano manifolds
    Tosatti, Valentino
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 640 : 67 - 84