Uncertainty estimation and visualization in probabilistic segmentation

被引:11
|
作者
Al-Taie, Ahmed [1 ,3 ]
Hahn, Horst K. [1 ,2 ]
Linsen, Lars [1 ]
机构
[1] Jacobs Univ Bremen, D-28759 Bremen, Germany
[2] Fraunhofer MEVIS, Bremen, Germany
[3] Univ Baghdad, Coll Sci Women, Dept Comp Sci, Baghdad, Iraq
来源
COMPUTERS & GRAPHICS-UK | 2014年 / 39卷
关键词
Uncertainty estimation; Uncertainty visualization; Probabilistic segmentation; C-MEANS ALGORITHM; INFORMATION;
D O I
10.1016/j.cag.2013.10.012
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Probabilistic segmentation is concerned with handling imperfections of image segmentation algorithms. They assign to each voxel and each segment a probability that the voxel belongs to the segment. This is often the starting point for estimating and visualizing uncertainties in the segmentation result. We propose a novel, generally applicable uncertainty estimation approach that considers all probabilities to compute a single uncertainty value between 0 and 1 for each voxel. It is based on aspects of information theory and uses the Kullback-Leibler divergence (or the total variation divergence). We developed several forms of the proposed approach and analyze and compare their behaviors. We show the advantage over existing approaches, derive aggregated uncertainty measures that are useful for judging the accuracy of a probabilistic segmentation algorithm, and present visualization methods to highlight uncertainties in segmentation results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [31] Uncertainty Estimation in Liver Tumor Segmentation Using the Posterior Bootstrap
    Wang, Shishuai
    Nuyts, Johan
    Filipovic, Marina
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023, 2023, 14291 : 188 - 197
  • [32] Perfect MCMC Sampling in Bayesian MRFs for Uncertainty Estimation in Segmentation
    Garg, Saurabh
    Awate, Suyash P.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 673 - 681
  • [33] Comparative evaluation of uncertainty estimation and decomposition methods on liver segmentation
    Vanja Sophie Cangalovic
    Felix Thielke
    Hans Meine
    International Journal of Computer Assisted Radiology and Surgery, 2024, 19 : 253 - 260
  • [34] Comparative evaluation of uncertainty estimation and decomposition methods on liver segmentation
    Cangalovic, Vanja Sophie
    Thielke, Felix
    Meine, Hans
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 19 (2) : 253 - 260
  • [35] Sliding transformer with uncertainty estimation for vestibular schwannoma automatic segmentation
    Liu, Yang
    Li, Mengjun
    Li, Mingchu
    Wang, Xu
    Liang, Jiantao
    Chen, Ge
    Feng, Yuanjing
    Chen, Zan
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (07):
  • [36] On the Calibration of Uncertainty Estimation in LiDAR-based Semantic Segmentation
    Dreissig, Mariella
    Piewak, Florian
    Boedecker, Joschka
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 4798 - 4805
  • [37] Post-operative glioblastoma multiforme segmentation with uncertainty estimation
    Gazit, Michal Holtzman
    Faran, Rachel
    Stepovoy, Kirill
    Peles, Oren
    Shamir, Reuben Ruby
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [38] Diffusion-Based Probabilistic Uncertainty Estimation for Active Domain Adaptation
    Du, Zhekai
    Li, Jingjing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [39] Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors
    Pelekis, M
    Nicolich, MJ
    Gauthier, JS
    RISK ANALYSIS, 2003, 23 (06) : 1239 - 1255
  • [40] Maximum-Likelihood Estimation of Predictive Uncertainty in Probabilistic QSAR Modeling
    Pery, Alexandre
    Henegar, Adina
    Mombelli, Enrico
    QSAR & COMBINATORIAL SCIENCE, 2009, 28 (03): : 338 - 344