Uncertainty estimation and visualization in probabilistic segmentation

被引:11
|
作者
Al-Taie, Ahmed [1 ,3 ]
Hahn, Horst K. [1 ,2 ]
Linsen, Lars [1 ]
机构
[1] Jacobs Univ Bremen, D-28759 Bremen, Germany
[2] Fraunhofer MEVIS, Bremen, Germany
[3] Univ Baghdad, Coll Sci Women, Dept Comp Sci, Baghdad, Iraq
来源
COMPUTERS & GRAPHICS-UK | 2014年 / 39卷
关键词
Uncertainty estimation; Uncertainty visualization; Probabilistic segmentation; C-MEANS ALGORITHM; INFORMATION;
D O I
10.1016/j.cag.2013.10.012
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Probabilistic segmentation is concerned with handling imperfections of image segmentation algorithms. They assign to each voxel and each segment a probability that the voxel belongs to the segment. This is often the starting point for estimating and visualizing uncertainties in the segmentation result. We propose a novel, generally applicable uncertainty estimation approach that considers all probabilities to compute a single uncertainty value between 0 and 1 for each voxel. It is based on aspects of information theory and uses the Kullback-Leibler divergence (or the total variation divergence). We developed several forms of the proposed approach and analyze and compare their behaviors. We show the advantage over existing approaches, derive aggregated uncertainty measures that are useful for judging the accuracy of a probabilistic segmentation algorithm, and present visualization methods to highlight uncertainties in segmentation results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [1] Evaluating a Visualization of Uncertainty in Probabilistic Tractography
    von Kapri, Anette
    Rick, Tobias
    Caspers, Svenja
    Eickhoff, Simon B.
    Zilles, Karl
    Kuhlen, Torsten
    MEDICAL IMAGING 2010: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2010, 7625
  • [2] Simultaneous segmentation, kinetic parameter estimation, and uncertainty visualization of dynamic PET images
    Saad, Ahmed
    Smith, Ben
    Hamarneh, Ghassan
    Moeller, Torsten
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 726 - +
  • [3] Surface modeling - Uncertainty estimation and visualization
    Drapikowski, Pawel
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2008, 32 (02) : 134 - 139
  • [4] Probabilistic segmentation and intensity estimation for microarray images
    Gottardo, R
    Besag, J
    Stephens, M
    Murua, A
    BIOSTATISTICS, 2006, 7 (01) : 85 - 99
  • [5] Uncertainty propagation in probabilistic seismic loss estimation
    Baker, Jack W.
    Cornell, C. Allin
    STRUCTURAL SAFETY, 2008, 30 (03) : 236 - 252
  • [6] An Uncertainty Estimation Framework for Probabilistic Object Detection
    Lyu, Zongyao
    Gutierrez, Nolan B.
    Beksi, William J.
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2021, : 1441 - 1446
  • [7] Bayesian estimation of probabilistic atlas for tissue segmentation
    Xu, H.
    Thirion, B.
    Allassonniere, S.
    IRBM, 2014, 35 (01) : 27 - 32
  • [8] Uncertainty visualization in medical volume rendering using probabilistic animation
    Lundstrom, Claes
    Ljung, Patric
    Persson, Anders
    Ynnerman, Anders
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (06) : 1648 - 1655
  • [9] Positional Uncertainty Estimation and Visualization of a triangular tessellation
    Cai Jianhong
    Li Deren
    Zhu, Daolin
    INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS II, PTS 1-3, 2011, 58-60 : 2057 - +
  • [10] Uncertainty Estimation for Planetary Robotic Terrain Segmentation
    Mueller, Marcus G.
    Durner, Maximilian
    Boerdijk, Wout
    Blum, Hermann
    Gawel, Abel
    Stuerzl, Wolfgang
    Siegwart, Roland
    Triebel, Rudolph
    2023 IEEE AEROSPACE CONFERENCE, 2023,