Uncertainty estimation and visualization in probabilistic segmentation

被引:11
|
作者
Al-Taie, Ahmed [1 ,3 ]
Hahn, Horst K. [1 ,2 ]
Linsen, Lars [1 ]
机构
[1] Jacobs Univ Bremen, D-28759 Bremen, Germany
[2] Fraunhofer MEVIS, Bremen, Germany
[3] Univ Baghdad, Coll Sci Women, Dept Comp Sci, Baghdad, Iraq
来源
COMPUTERS & GRAPHICS-UK | 2014年 / 39卷
关键词
Uncertainty estimation; Uncertainty visualization; Probabilistic segmentation; C-MEANS ALGORITHM; INFORMATION;
D O I
10.1016/j.cag.2013.10.012
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Probabilistic segmentation is concerned with handling imperfections of image segmentation algorithms. They assign to each voxel and each segment a probability that the voxel belongs to the segment. This is often the starting point for estimating and visualizing uncertainties in the segmentation result. We propose a novel, generally applicable uncertainty estimation approach that considers all probabilities to compute a single uncertainty value between 0 and 1 for each voxel. It is based on aspects of information theory and uses the Kullback-Leibler divergence (or the total variation divergence). We developed several forms of the proposed approach and analyze and compare their behaviors. We show the advantage over existing approaches, derive aggregated uncertainty measures that are useful for judging the accuracy of a probabilistic segmentation algorithm, and present visualization methods to highlight uncertainties in segmentation results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [21] Uncertainty estimation using a 3D probabilistic U-Net for segmentation with small radiotherapy clinical trial datasets
    Chlap, Phillip
    Min, Hang
    Dowling, Jason
    Field, Matthew
    Cloak, Kirrily
    Leong, Trevor
    Lee, Mark
    Chu, Julie
    Tan, Jennifer
    Tran, Phillip
    Kron, Tomas
    Sidhom, Mark
    Wiltshire, Kirsty
    Keats, Sarah
    Kneebone, Andrew
    Haworth, Annette
    Ebert, Martin A.
    Vinod, Shalini K.
    Holloway, Lois
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2024, 116
  • [22] Probabilistic Neural Network to Quantify Uncertainty of Wind Power Estimation
    Karami, Farzad
    Kehtarnavaz, Nasser
    Rotea, Mario
    PROCEEDINGS OF THE 2022 15TH IEEE DALLAS CIRCUITS AND SYSTEMS CONFERENCE (DCAS 2022), 2022,
  • [23] Propagation of uncertainty in fatigue crack growth for probabilistic life estimation
    Mallor, C.
    Calvo, S.
    Nunez, J. L.
    Rodriguez-Barrachina, R.
    Landaberea, A.
    1ST VIRTUAL EUROPEAN CONFERENCE ON FRACTURE - VECF1, 2020, 28 : 619 - 626
  • [24] Probabilistic segmentation of volume data for visualization using SOM-PNN classifier
    Ma, F
    Wang, WP
    Tsang, WW
    Tang, ZS
    Xia, SW
    Tong, X
    IEEE SYMPOSIUM ON VOLUME VISUALIZATION, 1998, : 71 - +
  • [25] Probabilistic atlas and geometric variability estimation to drive tissue segmentation
    Xu, Hao
    Thirion, Bertrand
    Allassonniere, Stephanie
    STATISTICS IN MEDICINE, 2014, 33 (20) : 3576 - 3599
  • [26] ProbExplorer: Uncertainty-guided Exploration and Editing of Probabilistic Medical Image Segmentation
    Saad, Ahmed
    Moeller, Torsten
    Hamarneh, Ghassan
    COMPUTER GRAPHICS FORUM, 2010, 29 (03) : 1113 - 1122
  • [27] Probabilistic Semantic Occupancy Grid Mapping Considering the Uncertainty of Semantic Segmentation with IPM
    Kobayashi, Shigeki
    Sasaki, Yoko
    Yorozu, Ayanori
    Ohya, Akihisa
    2022 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2022, : 250 - 255
  • [28] Brain Tumor Segmentation with Uncertainty Estimation and Overall Survival Prediction
    Feng, Xue
    Dou, Quan
    Tustison, Nicholas
    Meyer, Craig
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 304 - 314
  • [29] MODEL-DEPENDENT UNCERTAINTY ESTIMATION OF MEDICAL IMAGE SEGMENTATION
    Hershkovitch, Tsachi
    Riklin-Raviv, Tammy
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1373 - 1376
  • [30] Segmentation Uncertainty Estimation as a Sanity Check for Image Biomarker Studies
    Zhovannik, Ivan
    Bontempi, Dennis
    Romita, Alessio
    Pfaehler, Elisabeth
    Primakov, Sergey
    Dekker, Andre
    Bussink, Johan
    Traverso, Alberto
    Monshouwer, Rene
    CANCERS, 2022, 14 (05)