Clean matrices over commutative rings

被引:1
|
作者
Chen, Huanyin [1 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
关键词
matrix; clean element; unit-regularity; UNITS; ELEMENTS;
D O I
10.1007/s10587-009-0010-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A matrix A a M (n) (R) is e-clean provided there exists an idempotent E a M (n) (R) such that A-E a GL (n) (R) and det E = e. We get a general criterion of e-cleanness for the matrix [[a (1), a (2),..., a (n) +1]]. Under the n-stable range ondition, it is shown that [[a (1), a (2),..., a (n) +1]] is 0-clean iff (a (1), a (2),..., a (n) +1) = 1. As an application, we prove that the 0-cleanness and unit-regularity for such n x n matrix over a Dedekind domain coincide for all n a (c) 3/4 3. The analogous for (s, 2) property is also obtained.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 50 条
  • [21] Real algebraic geometry for matrices over commutative rings
    Cimpric, J.
    JOURNAL OF ALGEBRA, 2012, 359 : 89 - 103
  • [22] Reducibility and irreducibility of monomial matrices over commutative rings
    Bondarenko, Vitaliy M.
    Bortos, Maria Yu.
    Dinis, Ruslana F.
    Tylyshchak, Alexander A.
    ALGEBRA & DISCRETE MATHEMATICS, 2013, 16 (02): : 171 - 187
  • [23] Matrices over commutative rings as sums of fifth and seventh powers of matrices
    Garge, Anuradha S.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (12): : 2220 - 2227
  • [24] Representability of Matrices over Commutative Rings as Sums of Two Potent Matrices
    Abyzov, A. N.
    Tapkin, D. T.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (06) : 1227 - 1245
  • [25] On Commutative Clean Rings and pm Rings
    Burgess, W. D.
    Raphael, R.
    RINGS, MODULES AND REPRESENTATIONS, 2009, 480 : 35 - +
  • [26] Commutative feebly clean rings
    Arora, Nitin
    Kundu, S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (07)
  • [27] Clean, almost clean, potent commutative rings
    Varadarajan, K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (04) : 671 - 685
  • [28] Determinants of Arrowhead Matrices over Finite Commutative Chain Rings
    Jitman, Somphong
    Modjam, Pornrudee
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01): : 11 - 29
  • [29] IDEMPOTENTS IN MATRICES OVER COMMUTATIVE VONNEUMANN REGULAR-RINGS
    BARNETT, C
    CAMILLO, V
    COMMUNICATIONS IN ALGEBRA, 1990, 18 (11) : 3905 - 3911
  • [30] Matrices over Zhou nil-clean rings
    Abdolyousefi, Marjan Sheibani
    Chen, Huanyin
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) : 1527 - 1533