Clean matrices over commutative rings

被引:1
|
作者
Chen, Huanyin [1 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
关键词
matrix; clean element; unit-regularity; UNITS; ELEMENTS;
D O I
10.1007/s10587-009-0010-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A matrix A a M (n) (R) is e-clean provided there exists an idempotent E a M (n) (R) such that A-E a GL (n) (R) and det E = e. We get a general criterion of e-cleanness for the matrix [[a (1), a (2),..., a (n) +1]]. Under the n-stable range ondition, it is shown that [[a (1), a (2),..., a (n) +1]] is 0-clean iff (a (1), a (2),..., a (n) +1) = 1. As an application, we prove that the 0-cleanness and unit-regularity for such n x n matrix over a Dedekind domain coincide for all n a (c) 3/4 3. The analogous for (s, 2) property is also obtained.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 50 条
  • [41] On a class of Lie rings of 2 x 2 matrices over associative commutative rings
    Bashkirov, Evgenii L.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (03): : 456 - 478
  • [42] On clean, weakly clean and feebly clean commutative group rings
    Li, Yuanlin
    Zhong, Qinghai
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (05)
  • [43] Examples of clean commutative group rings
    Immormino, Nicholas A.
    McGovern, Warren Wm.
    JOURNAL OF ALGEBRA, 2014, 405 : 168 - 178
  • [44] Clean elements in commutative reduced rings
    Samei, K
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) : 3479 - 3486
  • [45] Commutative nil clean group rings
    McGovern, Warren Wm.
    Raja, Shan
    Sharp, Alden
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (06)
  • [46] On hereditary reducibility of 2-monomial matrices over commutative rings
    Bondarenko, Vitaliy M.
    Gildea, Joseph
    Tylyshchak, Alexander A.
    Yurchenko, Natalia V.
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (01): : 1 - 11
  • [47] On circulant involutory and orthogonal MDS matrices over finite commutative rings
    Ali, Shakir
    Khan, Atif Ahmad
    Singh, Bhupendra
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024,
  • [48] Indecomposable and irreducible t-monomial matrices over commutative rings
    Bondarenko, Vitaliy M.
    Bortos, Maria Yu.
    Dinis, Ruslana F.
    Tylyshchak, Alexander A.
    ALGEBRA & DISCRETE MATHEMATICS, 2016, 22 (01): : 11 - 20
  • [49] LOCAL DERIVATIONS OF THE ALGEBRA OF UPPER TRIANGULAR MATRICES OVER COMMUTATIVE RINGS
    Ahmed, Driss Aiat Hadj
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2006, 6 (03): : 515 - 518
  • [50] SOME STRONGLY NIL CLEAN MATRICES OVER LOCAL RINGS
    Chen, Huanyin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (04) : 759 - 767