Reducibility and irreducibility of monomial matrices over commutative rings

被引:0
|
作者
Bondarenko, Vitaliy M. [1 ]
Bortos, Maria Yu. [2 ]
Dinis, Ruslana F. [3 ]
Tylyshchak, Alexander A. [4 ]
机构
[1] Inst Math, Fereshchenkivsk 3, UA-01601 Kiev, Ukraine
[2] Uzhgorod Natl Univ, Fac Math, UA-88000 Uzhgorod, Ukraine
[3] Kyiv Natl Tras Sheychenko Univ, Fac Mech & Math, UA-01033 Kiev, Ukraine
[4] Uzhgorod Natl Univ, Fac Math, UA-88000 Uzhgorod, Ukraine
来源
ALGEBRA & DISCRETE MATHEMATICS | 2013年 / 16卷 / 02期
关键词
irreducible matrix; similarity; local ring; Jacobson radical;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a local ring with nonzero Jacobson radical. We study monomial matrices over R of the form 0 ... 0 t(sn) ( t(s1) ... 0 0 ) , 3 vertical dots (SIC) 3 vertical dots 3 vertical dots 0 ... t(sn-1) 0 and give a criterion for such matrices to be reducible when, n <= 6, s1 . . . , sn epsilon{0,1} and the radical is a principal ideal with generator t. We also show that the criterion does not hold for n = 7.
引用
收藏
页码:171 / 187
页数:17
相关论文
共 50 条
  • [1] On hereditary reducibility of 2-monomial matrices over commutative rings
    Bondarenko, Vitaliy M.
    Gildea, Joseph
    Tylyshchak, Alexander A.
    Yurchenko, Natalia V.
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (01): : 1 - 11
  • [2] On hereditary irreducibility of some monomial matrices over local rings
    Tylyshchak, A. A.
    Demko, M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (01) : 127 - 133
  • [3] Indecomposable and irreducible t-monomial matrices over commutative rings
    Bondarenko, Vitaliy M.
    Bortos, Maria Yu.
    Dinis, Ruslana F.
    Tylyshchak, Alexander A.
    ALGEBRA & DISCRETE MATHEMATICS, 2016, 22 (01): : 11 - 20
  • [4] PRIMALITY, IRREDUCIBILITY, AND COMPLETE IRREDUCIBILITY IN MODULES OVER COMMUTATIVE RINGS
    Albu, Toma
    Smith, Patrick F.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (04): : 275 - 286
  • [5] Clean matrices over commutative rings
    Huanyin Chen
    Czechoslovak Mathematical Journal, 2009, 59 : 145 - 158
  • [6] SIMILARITY OF MATRICES OVER COMMUTATIVE RINGS
    GURALNICK, RM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 157 : 55 - 68
  • [7] Clean matrices over commutative rings
    Chen, Huanyin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (01) : 145 - 158
  • [8] On similarity of matrices over commutative rings
    Prokip, V
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 225 - 233
  • [9] ON THE REPRESENTATION OF FINITE RINGS BY MATRICES OVER COMMUTATIVE RINGS
    MALTSEV, YN
    MATHEMATICS OF THE USSR-SBORNIK, 1985, 128 (3-4): : 379 - 402
  • [10] On the Representation of Finite Rings by Matrices over Commutative Rings
    Mekei A.
    Journal of Mathematical Sciences, 2014, 197 (4) : 548 - 557