Approximate Bayesian logistic regression via penalized likelihood by data augmentation

被引:36
|
作者
Discacciati, Andrea [1 ,2 ]
Orsini, Nicola [1 ,2 ,4 ]
Greenland, Sander [3 ]
机构
[1] Karolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
[2] Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-10401 Stockholm, Sweden
[3] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
来源
Stata Journal | 2015年 / 15卷 / 03期
关键词
st0400; penlogit; penalized likelihood estimation; data augmentation; Bayesian methods; logistic models; EPIDEMIOLOGIC RESEARCH; PROFILE LIKELIHOOD; MAXIMUM-LIKELIHOOD; VARIABLE SELECTION; PRIORS; DISTRIBUTIONS; PERSPECTIVES;
D O I
10.1177/1536867X1501500306
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We present a command, penlogit, for approximate Bayesian logistic regression using penalized likelihood estimation via data augmentation. This command automatically adds specific prior-data records to a dataset. These records are computed so that they generate a penalty function for the log likelihood of a logistic model, which equals (up to an additive constant) a set of independent log prior distributions on the model parameters. This command overcomes the necessity of relying on specialiZed software and statistical tools (such as Markov chain Monte Carlo) for fitting Bayesian models, and allows one to assess the information content of a prior in terms of the data that would be required to generate the prior as a likelihood function. The command produces data equivalent to normal and generalized log-F priors for the model parameters, providing flexible translation of background information into prior data, which allows calculation of approximate posterior medians and intervals from ordinary maximum likelihood programs. We illustrate the command through an example using data from an observational study of neonatal mortality.
引用
下载
收藏
页码:712 / 736
页数:25
相关论文
共 50 条
  • [1] PENALIZED LIKELIHOOD REGRESSION - A BAYESIAN-ANALYSIS
    GU, C
    STATISTICA SINICA, 1992, 2 (01) : 255 - 264
  • [2] Bayesian quantile regression with approximate likelihood
    Feng, Yang
    Chen, Yuguo
    He, Xuming
    BERNOULLI, 2015, 21 (02) : 832 - 850
  • [3] Improving logistic regression on the imbalanced data by a novel penalized log-likelihood function
    Zhang, Lili
    Geisler, Trent
    Ray, Herman
    Xie, Ying
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (13) : 3257 - 3277
  • [4] Penalized likelihood and Bayesian function selection in regression models
    Fabian Scheipl
    Thomas Kneib
    Ludwig Fahrmeir
    AStA Advances in Statistical Analysis, 2013, 97 : 349 - 385
  • [5] Penalized likelihood and Bayesian function selection in regression models
    Scheipl, Fabian
    Kneib, Thomas
    Fahrmeir, Ludwig
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (04) : 349 - 385
  • [6] Approximate Bayesian Estimation with Subsampled Logistic Regression in Big Data Settings
    Zhao, Peng
    Hu, Guanyu
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 58 - 64
  • [7] Model Selection Via Penalized Logistic Regression
    Ayers, Kristin L.
    Cordell, Heather J.
    GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 770 - 770
  • [8] Classification of microarray data with penalized logistic regression
    Eilers, PHC
    Boer, JM
    van Ommen, GJ
    van Houwelingen, HC
    MICROARRAYS: OPTICAL TECHNOLOGIES AND INFORMATICS, 2001, 4266 : 187 - 198
  • [9] Gene and pathway identification with Lp penalized Bayesian logistic regression
    Liu, Zhenqiu
    Gartenhaus, Ronald B.
    Tan, Ming
    Jiang, Feng
    Jiao, Xiaoli
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [10] PENALIZED MAXIMUM-LIKELIHOOD ESTIMATION IN LOGISTIC-REGRESSION AND DISCRIMINATION
    ANDERSON, JA
    BLAIR, V
    BIOMETRIKA, 1982, 69 (01) : 123 - 136