Multilevel methods in space and time for the Navier-Stokes equations

被引:25
|
作者
Burie, JB [1 ]
Marion, M [1 ]
机构
[1] ECOLE CENT LYON,DEPT MATH INFORMAT SYST,F-69131 ECULLY,FRANCE
关键词
multilevel methods; Galerkin method; Navier-Stokes equations;
D O I
10.1137/S0036142994267989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the discretization in time of numerical schemes based on multilevel spatial splittings for the two-dimensional periodic Navier-Stokes equations. The approximate solution is computed as the sum of a low frequency component and a high frequency one. These two terms are advanced in time using different stepsizes. We show improved stability conditions (with respect to the classical Galerkin method). We derive error estimates that indicate that the high frequency term can be integrated less often. We address implementation issues and show that the method should yield a significant gain in computing time.
引用
收藏
页码:1574 / 1599
页数:26
相关论文
共 50 条
  • [21] An adaptive space-time algorithm for the incompressible Navier-Stokes equations
    Boisneault, Antonin
    Dubuis, Samuel
    Picasso, Marco
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 493
  • [22] SPACE-TIME ESTIMATES IN THE BESOV SPACES AND THE NAVIER-STOKES EQUATIONS
    Chen, Qionglei
    Zhang, Zhifei
    METHODS AND APPLICATIONS OF ANALYSIS, 2006, 13 (01) : 107 - 122
  • [23] SPACE-TIME VARIATIONAL SADDLE POINT FORMULATIONS OF STOKES AND NAVIER-STOKES EQUATIONS
    Guberovic, Rafaela
    Schwab, Christoph
    Stevenson, Rob
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03): : 875 - 894
  • [24] KRYLOV METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    EDWARDS, WS
    TUCKERMAN, LS
    FRIESNER, RA
    SORENSEN, DC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) : 82 - 102
  • [25] RANDOM VORTEX METHODS FOR THE NAVIER-STOKES EQUATIONS
    CHANG, CC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 76 (02) : 281 - 300
  • [26] CONVERGENCE OF FOURIER METHODS FOR NAVIER-STOKES EQUATIONS
    HALD, OH
    JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 40 (02) : 305 - 317
  • [27] Energy methods for fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    Ahmad, Bashir
    Alsaedi, Ahmed
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 78 - 85
  • [28] Adaptive wavelet methods for the Navier-Stokes equations
    Schneider, K
    Farge, A
    Koster, F
    Griebel, M
    NUMERICAL FLOW SIMULATION II, 2001, 75 : 303 - 318
  • [29] CONVERGENCE OF FOURIER METHODS FOR THE NAVIER-STOKES EQUATIONS
    WEINAN, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (03) : 650 - 674
  • [30] Adaptive methods for Euler and Navier-Stokes equations
    Kliková, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S529 - S530