An adaptive space-time algorithm for the incompressible Navier-Stokes equations

被引:1
|
作者
Boisneault, Antonin [1 ]
Dubuis, Samuel [2 ]
Picasso, Marco [2 ]
机构
[1] Ponts ParisTech, Champs sur marne, Marne, France
[2] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
关键词
A posteriori error estimates; Space-time adaptive algorithm; Anisotropic finite elements; Second order time discretization; Navier-Stokes; STABILIZED FINITE-ELEMENTS; POSTERIORI ERROR ESTIMATOR; CRANK-NICOLSON METHOD; APPROXIMATION; MESHES;
D O I
10.1016/j.jcp.2023.112457
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A space-time adaptive algorithm is presented to solve the incompressible Navier-Stokes equations. Time discretization is performed with the BDF2 method while continuous, piecewise linear anisotropic finite elements are used for the space discretization. The error indicator in time is justified through an posteriori upper bound of the error due to time discretization. The error indicator in space is taken from [1]. Numerical experiments confirm the sharpness of the error indicator and the efficiency of the adaptive algorithm. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Rhebergen, Sander
    Cockburn, Bernardo
    van der Vegt, Jaap J. W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 233 : 339 - 358
  • [2] Adaptive time step control for the incompressible Navier-Stokes equations
    John, Volker
    Rang, Joachim
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (9-12) : 514 - 524
  • [3] Space-time decay for solutions of the Navier-Stokes equations
    Kukavica, I
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 : 205 - 222
  • [4] A multigrid algorithm for the incompressible Navier-Stokes equations
    Swanson, RC
    Thomas, JL
    Roberts, TW
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2141 - 2144
  • [5] SPACE-TIME ESTIMATES IN THE BESOV SPACES AND THE NAVIER-STOKES EQUATIONS
    Chen, Qionglei
    Zhang, Zhifei
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2006, 13 (01) : 107 - 122
  • [6] Space-time adaptive simulations for unsteady Navier-Stokes problems
    Berrone, S.
    Marro, M.
    [J]. COMPUTERS & FLUIDS, 2009, 38 (06) : 1132 - 1144
  • [7] AN ADAPTIVE MULTIGRID TECHNIQUE FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    THOMPSON, MC
    FERZIGER, JH
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) : 94 - 121
  • [8] SPACE-TIME VARIATIONAL SADDLE POINT FORMULATIONS OF STOKES AND NAVIER-STOKES EQUATIONS
    Guberovic, Rafaela
    Schwab, Christoph
    Stevenson, Rob
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03): : 875 - 894
  • [9] CONVERGENCE TO WEAK SOLUTIONS OF A SPACE-TIME HYBRIDIZED DISCONTINUOUS GALERKIN METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Kirk, Keegan L. A.
    Cesmelioglu, Aycil
    Rhebergen, Sander
    [J]. MATHEMATICS OF COMPUTATION, 2022, 92 (339) : 147 - 174
  • [10] HIGH-ORDER ADAPTIVE TIME STEPPING FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Guermond, Jean-Luc
    Minev, Peter
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A770 - A788