SPACE-TIME ESTIMATES IN THE BESOV SPACES AND THE NAVIER-STOKES EQUATIONS

被引:0
|
作者
Chen, Qionglei [1 ]
Zhang, Zhifei [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, Sch Math, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Strokes equations; Besov space; Regularity criterion; Littlewood-Play decomposition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the space-time estimates in the Besov spaces of the solution to the Navier-Stokes equations in R-n,n >= 3. As an application, we improve some known results about the regularity criterion of weak solutions and the blow-up criterion of smooth solutions. Our main tools are the frequency localization and the Littlewood-Paley decomposition.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [1] Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces
    Bae, Hantaek
    Biswas, Animikh
    Tadmor, Eitan
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) : 963 - 991
  • [2] Pointwise space-time estimates for compressible Navier-Stokes equations for a reacting mixture
    Wang, Wenjun
    Wu, Zhigang
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (02):
  • [3] QUANTITATIVE ESTIMATES FOR SPACE-TIME ANALYTICITY OF SOLUTIONS TO THE FRACTIONAL NAVIER-STOKES EQUATIONS
    Wang, Cong
    Gao, Yu
    Xue, Xiaoping
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) : 2619 - 2645
  • [4] Space-time decay for solutions of the Navier-Stokes equations
    Kukavica, I
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 : 205 - 222
  • [5] Bilinear estimates and uniqueness for Navier-Stokes equations in critical Besov-type spaces
    Ferreira, Lucas C. F.
    Perez-Lopez, Jhean E.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) : 379 - 400
  • [6] Navier-Stokes equations with external forces in time-weighted Besov spaces
    Kozono, Hideo
    Shimizu, Senjo
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) : 1781 - 1800
  • [7] Besov spaces and Navier-Stokes equations on R3
    Furioli, G
    Lemarié-Rieusset, PG
    Zahrouni, E
    Zhioua, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (05): : 339 - 342
  • [8] An adaptive space-time algorithm for the incompressible Navier-Stokes equations
    Boisneault, Antonin
    Dubuis, Samuel
    Picasso, Marco
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 493
  • [9] SPACE-TIME VARIATIONAL SADDLE POINT FORMULATIONS OF STOKES AND NAVIER-STOKES EQUATIONS
    Guberovic, Rafaela
    Schwab, Christoph
    Stevenson, Rob
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03): : 875 - 894
  • [10] Stability of stationary solutions to the Navier-Stokes equations in the Besov space
    Kozono, Hideo
    Shimizu, Senjo
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (05) : 1964 - 1982