Space-time decay for solutions of the Navier-Stokes equations

被引:31
|
作者
Kukavica, I [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Navier-Stokes equation; time decay; space decay; strong solutions;
D O I
10.1512/iumj.2001.50.2084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address decay properties of strong solutions of the Navier-Stokes equation. Obtained space-time decay rates agree with those of the heat equation. This improves earlier results by sharpening the exponents, by extending the range of validity in the space variable exponent, and by removing the restriction on the space dimension.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 50 条
  • [1] Joint space-time analyticity of mild solutions to the Navier-Stokes equations
    Wang, Cong
    Gao, Yu
    Xue, Xiaoping
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [2] Space-time regularity of the Koch & Tataru solutions to Navier-Stokes equations
    Du, Yi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 104 : 124 - 132
  • [3] SPACE-TIME HOLOMORPHIC TIME-PERIODIC SOLUTIONS OF NAVIER-STOKES EQUATIONS
    Tsyganov, Eugene
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [4] On decay of solutions to the Navier-Stokes equations
    Schonbek, ME
    [J]. APPLIED NONLINEAR ANALYSIS, 1999, : 505 - 512
  • [5] QUANTITATIVE ESTIMATES FOR SPACE-TIME ANALYTICITY OF SOLUTIONS TO THE FRACTIONAL NAVIER-STOKES EQUATIONS
    Wang, Cong
    Gao, Yu
    Xue, Xiaoping
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) : 2619 - 2645
  • [6] An adaptive space-time algorithm for the incompressible Navier-Stokes equations
    Boisneault, Antonin
    Dubuis, Samuel
    Picasso, Marco
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 493
  • [7] SPACE-TIME ESTIMATES IN THE BESOV SPACES AND THE NAVIER-STOKES EQUATIONS
    Chen, Qionglei
    Zhang, Zhifei
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2006, 13 (01) : 107 - 122
  • [8] Suitable weak solutions of the Navier-Stokes equations constructed by a space-time numerical discretization
    Berselli, Luigi C.
    Fagioli, Simone
    Spirito, Stefano
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 : 189 - 208
  • [9] Existence and decay of solutions in full space to Navier-Stokes equations with delays
    Niche, Cesar J.
    Planas, Gabriela
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) : 244 - 256
  • [10] SPACE-TIME VARIATIONAL SADDLE POINT FORMULATIONS OF STOKES AND NAVIER-STOKES EQUATIONS
    Guberovic, Rafaela
    Schwab, Christoph
    Stevenson, Rob
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03): : 875 - 894