Existence and decay of solutions in full space to Navier-Stokes equations with delays

被引:6
|
作者
Niche, Cesar J. [1 ]
Planas, Gabriela [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, Brazil
[2] Univ Estadual Campinas, Inst Matemat Estat Computacao Cientif, Dept Matemat, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Navier-Stokes equations; Delays; Decay of solutions; Fourier Splitting; QUASI-GEOSTROPHIC EQUATIONS; ASYMPTOTIC-BEHAVIOR; EXPONENTIAL STABILITY; WEAK SOLUTIONS; ATTRACTORS; MODEL; OCEAN;
D O I
10.1016/j.na.2010.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes equations with delays in R-n, 2 <= n <= 4. We prove existence of weak solutions when the external forces contain some hereditary characteristics and uniqueness when n = 2. Moreover, if the external forces satisfy a time decay condition we show that the solution decays at an algebraic rate. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 256
页数:13
相关论文
共 50 条