Exponential asymptotics of the Mittag-Leffler function

被引:52
|
作者
Wong, R
Zhao, YQ
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
Mittag-Leffler function; Stokes lines/curves; exponential asymptotics; Berry-type smooth transition;
D O I
10.1007/s00365-001-0019-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Stokes lines/curves are identified for the Mittag-Leffler function [GRAPHICS] When alpha is not real, it is found that the Stokes curves are spirals. Away from the Stokes lines/curves, exponentially improved uniform asymptotic expansions are obtained. Near the Stokes lines/curves, Berry-type smooth transitions are achieved via the use of the complementary error function.
引用
收藏
页码:355 / 385
页数:31
相关论文
共 50 条
  • [1] Exponential asymptotics of the Mittag-Leffler function
    Paris, RB
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2028): : 3041 - 3052
  • [2] ON ASYMPTOTICS OF DISCRETE MITTAG-LEFFLER FUNCTION
    Nechvatal, Ludek
    [J]. MATHEMATICA BOHEMICA, 2014, 139 (04): : 667 - 675
  • [4] Exponential Asymptotics of the Mittag—Leffler Function
    [J]. Constructive Approximation, 2002, 18 : 355 - 385
  • [5] On modifications of the exponential integral with the Mittag-Leffler function
    Mainardi F.
    Masina E.
    [J]. Fractional Calculus and Applied Analysis, 2018, 21 (5) : 1156 - 1169
  • [6] Erratum: On modifications of the exponential integral with the Mittag-Leffler function
    Francesco Mainardi
    Enrico Masina
    [J]. Fractional Calculus and Applied Analysis, 2020, 23 : 600 - 603
  • [7] ON EXTENSION OF MITTAG-LEFFLER FUNCTION
    Mittal, Ekta
    Pandey, Rupakshi Mishra
    Joshi, Sunil
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (01): : 307 - 316
  • [8] STAR MITTAG-LEFFLER FUNCTION
    Yoshioka, Akira
    Takeuchi, Tsukasa
    Yoshimi, Naoko
    [J]. PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 301 - 307
  • [9] The calculation of the Mittag-Leffler function
    Saenko, V. V.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (07) : 1367 - 1394
  • [10] Asymptotic Expansion of the Modified Exponential Integral Involving the Mittag-Leffler Function
    Paris, Richard
    [J]. MATHEMATICS, 2020, 8 (03)