ON ASYMPTOTICS OF DISCRETE MITTAG-LEFFLER FUNCTION

被引:0
|
作者
Nechvatal, Ludek [1 ]
机构
[1] Brno Univ Technol, Fac Mech Engn, Tech 2, Brno 61669, Czech Republic
来源
MATHEMATICA BOHEMICA | 2014年 / 139卷 / 04期
关键词
discrete Mittag-Leffler function; fractional difference equation; asymptotics; backward h-Laplace transform;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (modified) two-parametric Mittag-Leffler function plays an essential role in solving the so-called fractional differential equations. Its asymptotics is known (at least for a subset of its domain and special choices of the parameters). The aim of the paper is to introduce a discrete analogue of this function as a solution of a certain two-term linear fractional difference equation (involving both the Riemann-Liouville as well as the Caputo fractional h-difference operators) and describe its asymptotics. Here, we shall employ our recent results on stability and asymptotics of solutions to the mentioned equation.
引用
收藏
页码:667 / 675
页数:9
相关论文
共 50 条
  • [1] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    [J]. CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [2] Exponential asymptotics of the Mittag-Leffler function
    Paris, RB
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2028): : 3041 - 3052
  • [4] Mittag-Leffler function for discrete fractional modelling
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Zeng, Sheng-Da
    Luo, Wei-Hua
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 99 - 102
  • [5] DISCRETE MITTAG-LEFFLER DISTRIBUTIONS
    PILLAI, RN
    JAYAKUMAR, K
    [J]. STATISTICS & PROBABILITY LETTERS, 1995, 23 (03) : 271 - 274
  • [6] A Generalization to Bivariate Mittag-Leffler and Bivariate Discrete Mittag-Leffler Autoregressive Processes
    Jayakumar, K.
    Ristic, Miroslav M.
    Mundassery, Davis Antony
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (06) : 942 - 955
  • [7] ON EXTENSION OF MITTAG-LEFFLER FUNCTION
    Mittal, Ekta
    Pandey, Rupakshi Mishra
    Joshi, Sunil
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (01): : 307 - 316
  • [8] STAR MITTAG-LEFFLER FUNCTION
    Yoshioka, Akira
    Takeuchi, Tsukasa
    Yoshimi, Naoko
    [J]. PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 301 - 307
  • [9] The calculation of the Mittag-Leffler function
    Saenko, V. V.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (07) : 1367 - 1394
  • [10] Mittag-Leffler Functions in Discrete Time
    Atici, Ferhan M.
    Chang, Samuel
    Jonnalagadda, Jagan Mohan
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (03)