The calculation of the Mittag-Leffler function

被引:1
|
作者
Saenko, V. V. [1 ]
机构
[1] Ulyanovsk State Univ, SP Kapitsa Res Inst Technol, L Tolstoy St 42, Ulyanovsk 432017, Russia
基金
俄罗斯基础研究基金会;
关键词
Mittag-Leffler function; calculation Mittag-Leffler function; Integral representation; UNIFORM BRANCH; ANALYTICAL REPRESENTATION;
D O I
10.1080/00207160.2021.1976762
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of calculating the Mittag-Leffler function E-rho,E-mu (z) is considered in the paper. To solve this problem integral representations for the function E-rho,E-mu(z) are transformed in such a way that they could not contain complex variables and parameters. Integral representations written in this form allow one to use standard methods of numerical integration to calculate integrals contained in them. To verify the correctness of the integral representations obtained the function E-rho,E-mu (z) was calculated both with the use of obtained formulas and with the use of known representations of the MittagLeffler function. The calculation results demonstrate their exact matching. This fact is indicative of the correctness of new integral representations of the function E-rho,E-mu(z) that were obtained.
引用
收藏
页码:1367 / 1394
页数:28
相关论文
共 50 条
  • [1] ON EXTENSION OF MITTAG-LEFFLER FUNCTION
    Mittal, Ekta
    Pandey, Rupakshi Mishra
    Joshi, Sunil
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (01): : 307 - 316
  • [2] STAR MITTAG-LEFFLER FUNCTION
    Yoshioka, Akira
    Takeuchi, Tsukasa
    Yoshimi, Naoko
    [J]. PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 301 - 307
  • [3] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    [J]. CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [4] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [5] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [6] Comments on the properties of Mittag-Leffler function
    Dattoli, G.
    Gorska, K.
    Horzela, A.
    Licciardi, S.
    Pidatella, R. M.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3427 - 3443
  • [7] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    [J]. Russian Mathematics, 2022, 66 : 43 - 58
  • [8] Properties of the Mittag-Leffler relaxation function
    Berberan-Santos, MN
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 629 - 635
  • [9] When is a Mittag-Leffler function a Nussbaum function?
    Li, Yan
    Chen, YangQuan
    [J]. AUTOMATICA, 2009, 45 (08) : 1957 - 1959
  • [10] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395