Exponential asymptotics of the Mittag-Leffler function

被引:52
|
作者
Wong, R
Zhao, YQ
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
Mittag-Leffler function; Stokes lines/curves; exponential asymptotics; Berry-type smooth transition;
D O I
10.1007/s00365-001-0019-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Stokes lines/curves are identified for the Mittag-Leffler function [GRAPHICS] When alpha is not real, it is found that the Stokes curves are spirals. Away from the Stokes lines/curves, exponentially improved uniform asymptotic expansions are obtained. Near the Stokes lines/curves, Berry-type smooth transitions are achieved via the use of the complementary error function.
引用
收藏
页码:355 / 385
页数:31
相关论文
共 50 条
  • [41] On Modifications of the Gamma Function by Using Mittag-Leffler Function
    Tassaddiq, Asifa
    Alruban, Abdulrahman
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [42] Computing Enclosures for the Matrix Mittag-Leffler Function
    Miyajima, Shinya
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [43] The Role of the Mittag-Leffler Function in Fractional Modeling
    Rogosin, Sergei
    [J]. MATHEMATICS, 2015, 3 (02) : 368 - 381
  • [44] The extended Mittag-Leffler function and its properties
    Mehmet Ali Özarslan
    Banu Yılmaz
    [J]. Journal of Inequalities and Applications, 2014
  • [45] On some properties of the generalized Mittag-Leffler function
    Khan, Mumtaz Ahmad
    Ahmed, Shakeel
    [J]. SPRINGERPLUS, 2013, 2
  • [46] The extended Mittag-Leffler function and its properties
    Ozarslan, Mehmet Ali
    Yilmaz, Banu
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [47] Properties of the Mittag-Leffler function for negative alpha
    Hanneken, John W.
    Achar, B. N. Narahari
    Puzio, Raymond
    Vaught, David M.
    [J]. PHYSICA SCRIPTA, 2009, T136
  • [48] Mittag-Leffler function for discrete fractional modelling
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Zeng, Sheng-Da
    Luo, Wei-Hua
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 99 - 102
  • [49] MITTAG-LEFFLER FUNCTION AND FRACTIONAL DIFFERENTIAL EQUATIONS
    Gorska, Katarzyna
    Lattanzi, Ambra
    Dattoli, Giuseppe
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 220 - 236
  • [50] The New Mittag-Leffler Function and Its Applications
    Ayub, U.
    Mubeen, S.
    Abdeljawad, T.
    Rahman, G.
    Nisar, Kottakkaran Sooppy
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020