Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy

被引:366
|
作者
Fan, Fengjia [1 ]
Voznyy, Oleksandr [1 ]
Sabatini, Randy P. [1 ]
Bicanic, Kristopher T. [1 ]
Adachi, Michael M. [1 ,7 ]
McBride, James R. [2 ]
Reid, Kemar R. [2 ]
Park, Young-Shin [3 ,4 ]
Li, Xiyan [1 ]
Jain, Ankit [1 ]
Quintero-Bermudez, Rafael [1 ]
Saravanapavanantham, Mayuran [1 ]
Liu, Min [1 ]
Korkusinski, Marek [5 ]
Hawrylak, Pawel [6 ]
Klimov, Victor I. [3 ]
Rosenthal, Sandra J. [2 ]
Hoogland, Sjoerd [1 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
[2] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA
[4] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA
[5] CNR, Emerging Technol Div, Secur & Disrupt Technol, Ottawa, ON K1A 0R6, Canada
[6] Univ Ottawa, Dept Phys, Ottawa, ON K1A 0R6, Canada
[7] Simon Fraser Univ, Sch Engn Sci, 8888 Univ Dr Burnaby, Burnaby, BC V5A IS6, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 加拿大创新基金会;
关键词
AUGER RECOMBINATION; STIMULATED-EMISSION; SHELL NANOCRYSTALS; OPTICAL GAIN; CDSE; THRESHOLD; EXCITON; SEMICONDUCTORS; SURFACE; PHOTOLUMINESCENCE;
D O I
10.1038/nature21424
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material(1), as well as a narrow emission linewidth(2,3). Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature(4-6). This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses(7), limiting the gain lifetime to sub-nanoseconds and preventing steady laser action(8,9). State degeneracy also broadens the photoluminescence linewidth at the single-particle level(10). Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials(11,12) that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultranarrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
引用
收藏
页码:75 / +
页数:18
相关论文
共 50 条
  • [41] Heterostructures of Quantum-Cascade Laser for the Spectral Range of 4.6 μm for Obtaining a Continuous-Wave Lasing Mode
    A. V. Babichev
    A. G. Gladyshev
    V. V. Dudelev
    L. Ya. Karachinsky
    I. I. Novikov
    D. V. Denisov
    S. O. Slipchenko
    A. V. Lyutetskii
    N. A. Pikhtin
    G. S. Sokolovskii
    A. Yu. Egorov
    Technical Physics Letters, 2020, 46 : 442 - 445
  • [42] Heterostructures of Quantum-Cascade Laser for the Spectral Range of 4.6 μm for Obtaining a Continuous-Wave Lasing Mode
    Babichev, A. V.
    Gladyshev, A. G.
    Dudelev, V. V.
    Karachinsky, L. Ya.
    Novikov, I. I.
    Denisov, D. V.
    Slipchenko, S. O.
    Lyutetskii, A. V.
    Pikhtin, N. A.
    Sokolovskii, G. S.
    Egorov, A. Yu.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (05) : 442 - 445
  • [43] Continuous-wave operation of InGaN multiple quantum well laser diodes grown by molecular beam epitaxy
    Kauer, M
    Hooper, SE
    Bousquet, V
    Johnson, K
    Zellweger, C
    Barnes, JM
    Windle, J
    Smeeton, TM
    Heffernan, J
    ELECTRONICS LETTERS, 2005, 41 (13) : 739 - 741
  • [44] Continuous-wave upconversion lasing with a sub-10 W cm−2 threshold enabled by atomic disorder in the host matrix
    Byeong-Seok Moon
    Tae Kyung Lee
    Woo Cheol Jeon
    Sang Kyu Kwak
    Young-Jin Kim
    Dong-Hwan Kim
    Nature Communications, 12
  • [45] Ultralow-threshold Continuous-wave Quantum Dot Lasers Based on Minituarized Bound States in the Continuum
    Zhong, Hancheng
    Yu, Ying
    Yu, Siyuan
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 1566 - 1569
  • [46] Continuous-wave emission of III-V quantum dot lasers grown directly on Si substrates
    Shutts, Samuel
    Elliott, Stella N.
    Smowton, Peter M.
    Sobieserski, Angela
    Wu, Jiang
    Tang, Mingchu
    Liu, Huiyun
    Beanland, Richard
    2015 PHOTONICS CONFERENCE (IPC), 2015,
  • [47] High power continuous-wave operation of self-organized In(Ga)As/GaAs quantum dot lasers
    Wang, ZG
    Liang, JB
    Qian, G
    Xu, B
    1999 IEEE HONG KONG ELECTRON DEVICES MEETING, PROCEEDINGS, 1999, : 2 - 3
  • [48] Electrically Pumped Continuous-Wave III-V Quantum Dot Lasers Monolithically Grown On Silicon
    Chen, Siming
    Wu, Jiang
    Li, Wei
    Liao, Mengya
    Tang, Mingchu
    Jiang, Qi
    Shutts, Samuel
    Elliott, Stella
    Sobiesierski, Angela
    Ross, Ian
    Smowton, Peter
    Seeds, Alwyn
    Liu, Huiyun
    2016 INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2016,
  • [49] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
    苏向斌
    邵福会
    郝慧明
    刘汗青
    李叔伦
    戴德炎
    尚向军
    王天放
    张宇
    杨成奥
    徐应强
    倪海桥
    丁颖
    牛智川
    Chinese Physics B, 2023, 32 (09) : 591 - 594
  • [50] Very-low-threshold current density continuous-wave quantum-dot laser diode
    Freisem, S.
    Ozgur, G.
    Shavritranuruk, K.
    Chen, H.
    Deppe, D. G.
    ELECTRONICS LETTERS, 2008, 44 (11) : 679 - U32