Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy

被引:366
|
作者
Fan, Fengjia [1 ]
Voznyy, Oleksandr [1 ]
Sabatini, Randy P. [1 ]
Bicanic, Kristopher T. [1 ]
Adachi, Michael M. [1 ,7 ]
McBride, James R. [2 ]
Reid, Kemar R. [2 ]
Park, Young-Shin [3 ,4 ]
Li, Xiyan [1 ]
Jain, Ankit [1 ]
Quintero-Bermudez, Rafael [1 ]
Saravanapavanantham, Mayuran [1 ]
Liu, Min [1 ]
Korkusinski, Marek [5 ]
Hawrylak, Pawel [6 ]
Klimov, Victor I. [3 ]
Rosenthal, Sandra J. [2 ]
Hoogland, Sjoerd [1 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
[2] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA
[4] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA
[5] CNR, Emerging Technol Div, Secur & Disrupt Technol, Ottawa, ON K1A 0R6, Canada
[6] Univ Ottawa, Dept Phys, Ottawa, ON K1A 0R6, Canada
[7] Simon Fraser Univ, Sch Engn Sci, 8888 Univ Dr Burnaby, Burnaby, BC V5A IS6, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 加拿大创新基金会;
关键词
AUGER RECOMBINATION; STIMULATED-EMISSION; SHELL NANOCRYSTALS; OPTICAL GAIN; CDSE; THRESHOLD; EXCITON; SEMICONDUCTORS; SURFACE; PHOTOLUMINESCENCE;
D O I
10.1038/nature21424
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material(1), as well as a narrow emission linewidth(2,3). Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature(4-6). This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses(7), limiting the gain lifetime to sub-nanoseconds and preventing steady laser action(8,9). State degeneracy also broadens the photoluminescence linewidth at the single-particle level(10). Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials(11,12) that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultranarrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
引用
收藏
页码:75 / +
页数:18
相关论文
共 50 条
  • [31] Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser
    Huang, XD
    Stintz, A
    Hains, CP
    Liu, GT
    Cheng, J
    Malloy, KJ
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (03) : 227 - 229
  • [32] Continuous-wave operation of Si-based 1.31 μm InAs/GaAs quantum-dot laser grown by molecular beam epitaxy
    Du, Antian
    Cao, Chunfang
    Han, Shixian
    Wang, Hailong
    Gong, Qian
    PHYSICA SCRIPTA, 2023, 98 (08)
  • [33] Stable continuous-wave lasing from discrete cesium lead bromide quantum dots embedded in a microcavity
    Zhang, Hongbo
    Wen, Wen
    Du, Bowen
    Zhou, Lei
    Chen, Yu
    Feng, Shun
    Zou, Chenji
    Wu, Lishu
    Fan, Hong Jin
    Gao, Weibo
    Sun, Handong
    Shang, Jingzhi
    Yu, Ting
    NANOSCALE HORIZONS, 2023, 8 (10) : 1403 - 1410
  • [34] Room temperature continuous-wave operation of InAsSb quantum-dot distributed feedback lasers
    Qiu, YM
    Yang, RQ
    APPLIED PHYSICS LETTERS, 2005, 87 (20) : 1 - 3
  • [35] Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001)
    Zhou, Taojie
    Tang, Mingchu
    Xiang, Guohong
    Xiang, Boyuan
    Hark, Suikong
    Martin, Mickael
    Baron, Thierry
    Pan, Shujie
    Park, Jae-Seong
    Liu, Zizhuo
    Chen, Siming
    Zhang, Zhaoyu
    Liu, Huiyun
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [36] Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001)
    Taojie Zhou
    Mingchu Tang
    Guohong Xiang
    Boyuan Xiang
    Suikong Hark
    Mickael Martin
    Thierry Baron
    Shujie Pan
    Jae-Seong Park
    Zizhuo Liu
    Siming Chen
    Zhaoyu Zhang
    Huiyun Liu
    Nature Communications, 11
  • [37] Ultra-low threshold continuous-wave quantum dot mini-BIC lasers
    Hancheng Zhong
    Ying Yu
    Ziyang Zheng
    Zhengqing Ding
    Xuebo Zhao
    Jiawei Yang
    Yuming Wei
    Yingxin Chen
    Siyuan Yu
    Light: Science & Applications, 12
  • [38] Ultra-low threshold continuous-wave quantum dot mini-BIC lasers
    Zhong, Hancheng
    Yu, Ying
    Zheng, Ziyang
    Ding, Zhengqing
    Zhao, Xuebo
    Yang, Jiawei
    Wei, Yuming
    Chen, Yingxin
    Yu, Siyuan
    LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
  • [39] Room temperature continuous-wave operation of InAs/InP (100) quantum dot lasers grown by gas-source molecular-beam epitaxy
    Li, S. G.
    Gong, Q.
    Lao, Y. F.
    He, K.
    Li, J.
    Zhang, Y. G.
    Feng, S. L.
    Wang, H. L.
    APPLIED PHYSICS LETTERS, 2008, 93 (11)
  • [40] Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy
    Sun, ZZ
    Yoon, SF
    Yew, KC
    Bo, BX
    Yan, DA
    Chih-Hang, T
    APPLIED PHYSICS LETTERS, 2004, 85 (09) : 1469 - 1471