Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy

被引:366
|
作者
Fan, Fengjia [1 ]
Voznyy, Oleksandr [1 ]
Sabatini, Randy P. [1 ]
Bicanic, Kristopher T. [1 ]
Adachi, Michael M. [1 ,7 ]
McBride, James R. [2 ]
Reid, Kemar R. [2 ]
Park, Young-Shin [3 ,4 ]
Li, Xiyan [1 ]
Jain, Ankit [1 ]
Quintero-Bermudez, Rafael [1 ]
Saravanapavanantham, Mayuran [1 ]
Liu, Min [1 ]
Korkusinski, Marek [5 ]
Hawrylak, Pawel [6 ]
Klimov, Victor I. [3 ]
Rosenthal, Sandra J. [2 ]
Hoogland, Sjoerd [1 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
[2] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA
[4] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA
[5] CNR, Emerging Technol Div, Secur & Disrupt Technol, Ottawa, ON K1A 0R6, Canada
[6] Univ Ottawa, Dept Phys, Ottawa, ON K1A 0R6, Canada
[7] Simon Fraser Univ, Sch Engn Sci, 8888 Univ Dr Burnaby, Burnaby, BC V5A IS6, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 加拿大创新基金会;
关键词
AUGER RECOMBINATION; STIMULATED-EMISSION; SHELL NANOCRYSTALS; OPTICAL GAIN; CDSE; THRESHOLD; EXCITON; SEMICONDUCTORS; SURFACE; PHOTOLUMINESCENCE;
D O I
10.1038/nature21424
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material(1), as well as a narrow emission linewidth(2,3). Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature(4-6). This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses(7), limiting the gain lifetime to sub-nanoseconds and preventing steady laser action(8,9). State degeneracy also broadens the photoluminescence linewidth at the single-particle level(10). Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials(11,12) that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultranarrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
引用
收藏
页码:75 / +
页数:18
相关论文
共 50 条
  • [21] 1.3-μm continuous-wave lasing operation in GaInNAs quantum-well lasers
    Nakahara, K
    Kondow, M
    Kitatani, T
    Larson, MC
    Uomi, K
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1998, 10 (04) : 487 - 488
  • [22] Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells
    Grim, Joel Q.
    Christodoulou, Sotirios
    Di Stasio, Francesco
    Krahne, Roman
    Cingolani, Roberto
    Manna, Liberato
    Moreels, Iwan
    NATURE NANOTECHNOLOGY, 2014, 9 (11) : 891 - 895
  • [23] Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells
    Joel Q. Grim
    Sotirios Christodoulou
    Francesco Di Stasio
    Roman Krahne
    Roberto Cingolani
    Liberato Manna
    Iwan Moreels
    Nature Nanotechnology, 2014, 9 : 891 - 895
  • [24] Continuous-Wave Pumping of Multiexciton Bands in the Photoluminescence Spectrum of a Single CdTe-CdSe Core-Shell Colloidal Quantum Dot
    Osovsky, Ruth
    Cheskis, Dima
    Kloper, Viki
    Sashchiuk, Aldona
    Kroner, Martin
    Lifshitz, Efrat
    PHYSICAL REVIEW LETTERS, 2009, 102 (19)
  • [25] Electrically pumped continuous-wave III-V quantum dot lasers on silicon
    Chen, Siming
    Li, Wei
    Wu, Jiang
    Jiang, Qi
    Tang, Mingchu
    Shutts, Samuel
    Elliott, Stella N.
    Sobiesierski, Angela
    Seeds, Alwyn J.
    Ross, Ian
    Smowton, Peter M.
    Liu, Huiyun
    NATURE PHOTONICS, 2016, 10 (05) : 307 - +
  • [26] Electrically pumped continuous-wave III-V quantum dot lasers on silicon
    Chen S.
    Li W.
    Wu J.
    Jiang Q.
    Tang M.
    Shutts S.
    Elliott S.N.
    Sobiesierski A.
    Seeds A.J.
    Ross I.
    Smowton P.M.
    Liu H.
    Nature Photonics, 2016, 10 (5) : 307 - 311
  • [27] Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation
    Kaganovskii, Y
    Antonov, I
    Bass, F
    Rosenbluh, M
    Lipovskii, A
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (12) : 8273 - 8278
  • [28] High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser
    Maximov, MV
    Shernyakov, YM
    Tsatsul'nikov, AF
    Lunev, AV
    Sakharov, AV
    Ustinov, VM
    Egorov, AY
    Zhukov, AE
    Kovsh, AR
    Kop'ev, PS
    Asryan, LV
    Alferov, ZI
    Ledentsov, NN
    Bimberg, D
    Kosogov, AO
    Werner, P
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (10) : 5561 - 5563
  • [29] Very Low Threshold Current Density Continuous-Wave Quantum Dot Laser Diode
    Deppe, D. G.
    Freisem, S.
    Ozgur, G.
    Shavritranuruk, K.
    Chen, H.
    2008 IEEE 21ST INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE, 2008, : 33 - 34
  • [30] Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding
    Ide, T
    Baba, T
    Tatebayashi, J
    Iwamoto, S
    Nakaoka, T
    Arakawa, Y
    OPTICS EXPRESS, 2005, 13 (05): : 1615 - 1620