Adaptive spatial partitioning for multidimensional data streams

被引:14
|
作者
Hershberger, John
Shrivastava, Nisheeth
Suri, Subhash
Toth, Csaba D.
机构
[1] Mentor Graph Corp, Wilsonville, OR 97070 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
multidimensional data stream; summarization; heavy hitters; range query;
D O I
10.1007/s00453-006-0070-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a space-efficient scheme for summarizing multidimensional data streams. Our sketch can be used to solve spatial versions of several classical data stream queries efficiently. For instance, we can track epsilon-hot spots, which are congruent boxes containing at least an epsilon fraction of the stream, and maintain hierarchical heavy hitters in d dimensions. Our sketch can also be viewed as a multidimensional generalization of the epsilon-approximate quantile summary. The space complexity of our scheme is O((1/epsilon) log R) if the points lie in the domain [0, R](d), where d is assumed to be a constant. The scheme extends to the sliding window model with a log (epsilon n) factor increase in space, where n is the size of the sliding window. Our sketch can also be used to answer epsilon-approximate rectangular range queries over a stream of d-dimensional points.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 50 条
  • [41] Spatial prediction and spatial dependence monitoring on georeferenced data streams
    Antonio Balzanella
    Antonio Irpino
    [J]. Statistical Methods & Applications, 2020, 29 : 101 - 128
  • [42] Adaptive spatial partitioning and refinement for overset structured grids
    Meakin, RL
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 189 (04) : 1077 - 1117
  • [43] Multidimensional fuzzy partitioning of attribute ranges for mining quantitative data
    Gyenesei, A
    Teuhola, J
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2004, 19 (11) : 1111 - 1126
  • [44] AN ADAPTIVE SELECTIVE ENSEMBLE FOR DATA STREAMS CLASSIFICATION
    Grossi, Valerio
    Turini, Franco
    [J]. ICAART 2011: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2011, : 136 - 145
  • [45] Adaptive Threshold for Outlier Detection on Data Streams
    Clark, James P.
    Liu, Zhen
    Japkowicz, Nathalie
    [J]. 2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 41 - 49
  • [46] Adaptive Anomaly Detection on Network Data Streams
    Riddle-Workman, Elizabeth
    Evangelou, Marina
    Adams, Niall M.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2018, : 19 - 24
  • [47] Adaptive clusters and histograms over data streams
    Puttagunta, V
    Kalpakis, K
    [J]. IKE '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE ENGINEERING, 2005, : 98 - 104
  • [48] Adaptive Learning from Evolving Data Streams
    Bifet, Albert
    Gavalda, Ricard
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS VIII, PROCEEDINGS, 2009, 5772 : 249 - 260
  • [49] An Efficient Multidimensional Fusion Algorithm for IoT Data Based on Partitioning
    Jin Zhou
    Liang Hu
    Feng Wang
    Huimin Lu
    Kuo Zhao
    [J]. Tsinghua Science and Technology, 2013, 18 (04) : 369 - 378
  • [50] APForecast: An adaptive forecasting method for data streams
    Wang, YL
    Xu, HB
    Dong, YS
    Liu, XJ
    Qian, JB
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2005, 3682 : 957 - 963